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FOREWORD

This is the final technical report entitled "Performance Evalu-
ation of Nine Candidate REMBASS Single-Target Classifiers"
prepared by Adaptronics, Inc., McLean, Virginia 22101 for the
U.S. Army Mobility Equipment Research and Development Center
(MERDC) under Contract Number DAAK02-74-C-0322. This report
presents the findings of research and development performed
by the Contractor during the period 1 March 1975 to 31 December
1975.

The end items of this project, in addition to monthly repoits
and periodic briefings, include this final technical report,
that documents the materials and methods employed, and computer
programs that implement the classifiers under study.

Dr. Anthony N. Mucciardi was Project Manager and Principal
Investigator for Adaptronics, Inc. The authors thank
Dr. Richard K. Young, the MERDC Project Monitor, for his
advice, guidance, and enthusiastic encouragement throughout
this project. Special thanks are due Mr. Roger L. Barron of
Adaptronics for many valuable technical insights and for con-
ducting a number of the briefings. The authors also express
their appreciation to Mses. Linda Flickinger, Janice Sennett,
and Marilyn Collins of the Adaptronics staff for editorial
and typing assistance.
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1. SUMMARY OF WORK TASKS, RESULTS,

AND CONCLUSIONS

1.1 SUMMARY OF WORK TASKS AND RESULTS

The main objectiv, .. of this project were to:

. Simulate •,- operation of seismic and seisiric/acoustic
classifie:r•; developed by Sylvania and Honeywell for the
U.S. Army.

9 Evaluate the performance (i.e.. overall accuracy and
site independence) of the simulations using lield
seismic and acoustic waveforms.

* Determine whether an optimal classifier using a composite
set of features could be found to improve the six target-
class discrimination accuracies.

e Establish the degree of separability of the six target
classes using the composite feature set.

* Investigate alternative means of classification based
on the composite feature set.

The simulated Sylvania and Honeywell seismic target classifiers

(STC's) and seismic/acoustic target classifiers (SATC's) were!

extensively tested to ensure that the respective digital simu-

lations mimicked the analog circuitry as closely as possible.

All classifier accuracy comparisons in this report are based

on a 10-second epoch. That is, a classification is made for
each 10-second signature and it is compared to the correct

target class. The ovei-all accuracy for one vehicle run, there-

fore, would be equal to the number of correctly classified 10-

second epochs divided by the total number of epochs for that

run.



The six target class (tracked vehicle, wheeled vehicle, fixed-

wing aircraft, rotary-wing aircraft, personnel, nuisance)

accuracies that resulted when the 671-record digitized field

data were classified by the Sylvania and Honeywell STC's and SATC's

are given in Table 1.1. It can be seen that low accuracies,

severe biases, and considerable site dependencies resulted

with all four classifiers. None of the four can be considered

to be an acceptable design.

The inherent separability of each of the four feature sets,

independent of the classifier weights, was established via a

clustering analysis, which is a way to determine regions in

the feature space in which the 10-second records from each target

class are located when all N features are considered simultaneously.

2



TABLE 1.1

CONFUSION MATRICES FOR FOUR CURRENT CLASSIFIERS
(XJ;NFI.S ION MhI% it I'S; FOR I'lE'; SYIV% iA STC Sl'!ULI.A'r IoN

True Ihcist o I iiot lj .114 CI it .8 ClIass Sitll
LUcatl ion !: ass Til a I A_ _ii ri_ Accuracy

Ft Bragg 1 21 9 8 2 0 0 40 .53
2 21 17 0 1 0 0 39 .44
3 6 17 0 0 1 0 51 .00
4 0 34 0 0 2 0 36 .00
5 0 0 0 0 0 0 0 -
6 1 0 1 0 0 0 2 .00

38/171 - .22

Grayling 1 32 15 8 0 0 0 55 .58
2 4 66 0 0 0 0 70 .94
3 0 0 0 0 0 0 0 .
4 0 0 0 0 0 0 0 -
5 0 0 0 0 0 0 0 -
6 0 11 0 0 0 0 11 .00-

98/136 * .72

Yu•a 1 117 35 50 1 0 40 2413 .48
2 43 38 1 0 0 0 82 .46
3 0 0 0 0 0 0 0 -
4 0 0 0 0 0 0 0 -
5 8 26 0 0 0 0 54 .00
6 5 0 0 0 0 0 5 .00

155/364 - .4.1

Overall Accuracy: 291/671 = .43

CONFUSION MATRICES FOR TIHE SYLVANIA SATC SIMULATION

True _ _Iciton (C lais Class Class SiteLocat ion CI ass 1 2 :. 51 S-- Tot il Accuracy AccuracY

Ft. Bragg . 1 i 6 0 25 5 0 40 .10
2 10 4 0 8 17. 0 39 .10
3 1 8 0 3 42 0 5.1 .00
4 0 21 0 0 15 0 36 .00
5 0 0 0 0 0 0 0
6 0 1 0 1 0 0 2 .00

8/171 - .05

Grayling 1 0 10 0 32 13 0 55 .00 i
2 0 18 0 18 34 0 70 .26

3 0 0 0 0 0 0 0 -

4 0 0 0 0 0 0 0 -

5 0 0 0 0 0 0 n -

6 0 0 0 0 11 0 11 .00
1/136 - .13

Yuma 1 7 26 0 202 6 2 243 .03
2 15 1 0 5 47 14 82 .01
3 0 0 0 0 0 0 0 -
4 0 0 0 0 0 0 0 -

5 0 4 0 3 27 0 34 .79
6 0 0 0 0 0 5 5 1.00

40/364 = .11

N
Overall Accuracy: 66•/671 .10

Number Nomenclature Acrone_

1 Tracked Vehicle TV
2 Wheeled Vehicle wV
3 Fixed-Wing Aircraft FWA
4 Rotary-Wing Aircraft RWA
5 Personnel PER
6 Nuisance 3 Ns



TABLE 1. 1

(Continued)
WONFUSION MA'rfiu'is FOR TiHl. ONLYWL.I. Sr"C S IMUIATION

T rue• D.r i.•tn Ck| u.s (C1 ass ClIaWO Site

Location Cl a._s' 1 2 3 . 543 Taýtl 1r' A(urajy

Ft. Bragg 1 2 0 22 8 4 4 40 .05
2 0 0 21 10 1 7 39 .00
3 0 1 41 1 10 1 54 .76
4 3 0 0 28 5 0 36 .78
5 0 0 0 0 0 0 0 -
6 0 0 2 0 0 0 2 .00

71/171 - .42

Gray I Ing 1 0 0 22 3 28 2 55 .00
2 0 19 7 1 32 11 70 .27
2 0 0 0 0 0 0 0 -

4 0 0 0 0 0 0 0 -
5 0 0 0 0 0 0 0 -
6 0 3 0 0 7 1 11 .09

20/136 - .15

Yuma 1 0 2 89 28 90 34 243 .00
2 4 7 30 15 3 23 82 .09
3 0 0 0 0 0 0 0 -
4 0 0 0 0 0 0 0 -
5 0 14 0 10 8 2 34 .24

6 0 0 0 4 0 1 5 .20

16/364 - .04

Overall Accuracy: 107/671 " .16

CONFUSION MATRICE.S FOR THE IiONEYWEI.I, SATC SI.U'l,-'rON

True Decision Class Class Site
Locat Ion C1 ass 1 2 3 4 5 - Total Accuracy Accuracy

Ft. Bragg 1 2 2 0 0 , 0 40 .. 5
2 1 0 0 ( 1 :4 0 .:01
3 0 0 0 0 5.1 0 5-i .00
4 1 0 0 8 27 0 .22

5 0 0 0 0 0 0 o
6 0 0 0 n 2 0 2 .O00

10/171 - .06

Graylir.g 1 0 5 0 0 50 0 55 .00
2 4 23 0 4 34 0 70 .40
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0
6 1 0 0 0 0 t) 11 .00

28/136 .21

Yuma 1, 3 5 0 0 235 0 243 .01

2 1 12 0 1 68 0 82 .153 0 0 0 0 0 0 0 -

4 0 0 0 0 0 0 0 -

5 0 28 0 0 6 0 34 .18

6 0 0 0 5 0 5 .00

21/364 .06

Overall Accuracy: 59/4171 .09

Class
Namber Nomenclature Acronym

1 Tracked Vehicle TV
2 Wheeled Vehicle WV
3 Fixed-Wing Aircraft FWA
4 Rotary-Wing Aircraft RWA
5 Personnel PER
6 Nuisance NUS4
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After this is performed for each of the six targut classes, the

degree of separability (indicating potentially accurate discrimi-r

nation) or overlap (indicating potential misclassifications)

can be quantified.

The cluster structures of the feature sets as developed by each

of the four simulations did not show promise of good interclass

separability. The analysis showed that the Sylvaria features
(seismic and acoustic) are more appropriate for the separation of

tracked vehicles from other types of signatures, while the

Honeywell features are more suited for the separation of wheeled

vehicles from signatures of other classes.

Although none of the four feature sets was capable of distinguish-

ingunambiguously among all six target classes, the fact that the

Sylvania features were good tracked vehicle discriminators and

the Honeyvell features were good wibeeled vehicle discriminators

suggested that a 4ombination of all four feature sets could dis-

criminate well among the six classes.

The 19 seismic features 'rom the Honeywell and Sylvania STC's

were combined with the nine acoustic features from the Honeywell

and Sylvania SATC's to form a composite 28 feature set. The

cluster analysis was repeated using this combined feature set and,

indeed, a considerable degree of interclass separability was

found. In the design of new classifiers, the combined Sylvania

and Honeywell feature set was used, plus a 29th, the acoustic-to-

seismic energy ratio. It was established that this feature
was a key parameter for separating tracked vehicles from all

other classes.

In order to prove the superiority of the composite, or "optimized"

feature set, classifiers were designed using the original Sylvania

and Honeywell features as well as a number of classifiers that used

the composite features.

5
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Table 1.2 lists the nine classifiers, labeled A, B, .. ,I, along

with their pertinent characteristics. It can be seen that the
first four classifiers are the Sylvania (A and B) and Honeywell

(C and D) classifiers with new weights (based on this three-

site data base), while the last five classifiers were newly '
designed by Adaptronics during this proJect. Classifier E is

identical in its architecture to the Sylvania and Honeywell

types except that 29 features are used. Classifiers F and G

utilize 15 pairwise--voting, 1 versus 1, discriminant functions

with tie-breaking decision logic to render one classification.

The difference between F and G is that F employs linear wh~ile

G uses nonlinear discriminant functions. H and I are similar to

F and G except that no tie-breaking logic is used; instead, any

target class receiving more thani a threshold number of votes is

reported.

LIt is interesting to observe that the lirnear classifier performed
slightly better than nonlinear classifiers. Although not tested

specifically in this program, it is our opinion a non-linear

classifier would have outperformed a linear classifier if the

number of features were reduced drastically, as is desired in

operational systems.

Each of the nine classifiers was designed using the same setj

of signatures -- a subset of 225 from -the 671-record field

data base. The remaining 446 signatures were used for an inide-
pendent evaluation. All results are based on the evaluation

data subset. Each classifier was designed and evaluated on data
from three sites: Ft. Bragg, Grayling, and Yuma. Therefore,

three confusion matrices were computed for each classifier.

6
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An overall criterion of performance, P, was established for

each classifier so that the nine (as well as others not described

here) could be rank -ordered on a common scale. The performance

measure was a function of three quantities:

1. A - Overall accuracy

2. C - Consistency of overall accuracy

3. S - Site independence

The overall accuracy, A, was defined as the number of correct

decisions divided by the total number of decisions for the given

classifie,-. The value of A can range from 0, for total error,

to 1, for perfect classification.

Since it is desirable for a classifier to perform .quallj well

for all six target; classes, a measure of accuracy consistency,

C, was constructed as follows. The average accuracy and its

standard deviation, a, were computed over all six classes, con-

sidering all three sites. If the average accuracy was the same

for all six classes, a was zero, Conversely, a large value

of a denoted inconsistent classiftcations. Therefore, the con-

sistency measure was computed as: C = 1 - u. The value of C

can range from 0.45, for inco)nsistent classifications, to 1, for

perfectly consistent classifications.

The site independence measure, S, was ot-ained as follows. The

six class accuracies were computed for each of the three qJ4 •.

The value of S was set equal to the ratio of the lowest site

accuracy to the best site accuracy. Thus, if a classifier pec-

formed well at one or more sites, but poorly at one of the ocher

sites, S was small. Conversely, S approached 1 as a given clas-

sifier produced consistent, i.e., the same, accuracy at all sites

The overall performance measure was computed as the product of

the three criteria of success:

P=AxCxS8



Good performance exists when A, C, and S each approach 1, as does

P. Therefore, any group of classifiers can be rated on the above

performance scale, which ranges from 0 for poor performance to 1.

for perfect performance.

Notice that a classifier that had an overall accuracy of 90

percent (A = 0.9), with a standard deviation of 10 perent

(C = 1 - 0.1 = 0.9), and a worst-site-to-best-site accuracy

ratio of 90/100 (S = 0.9/1.0 = 0.9) -- all very good

values -- would achieve a performance value of

P =0.9 x 0.9 x 0.9 =0.729.

Thus, in practice, a P value greater than about 0.7 can be viewed

as signifying excellent performance.

The rank-ordered performance of the nine classifiers is given

in Table 1.3. It can be seen that the lowest performers were

the two STC's (P = 0.155 and 0.169) followed by the two SATC's

(P = 0.303 and 0.428). Classifier E, the redesigned version

of Classifiers A to D using the optimized 29 features, ranked

fift,, with P = 0.639. This verifies the above cluster analysis

result that the combined feature set is indeed superior to any
of the four feature sets if one uses the same classifier

structure.

The best performers were the redesigned classiiiers that used

the 29th feature and a more sophi:iticated decision logic for I
classification; i.e., deciding among pairs of targets rather
than one target from all others. The performances of these

four clas-zifiers ronged from 0.661 to 0.784.

1
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1.2 SUMMARY OF CONCLUSIONS

This study has demonstrated that a seismic/acoustic six-way target
classifier can be realized that has the following principal
attributes:

*High single epoch classification accuracy of approximately
85 percent.

*Consistent accuracy for different sites, different classes,
and different ranges, altitudes, speeds. and headings
of targets.

e Signal features taken from prior designs by Sylvania and
Honeywell.I.*Ability to discriminate tracked vehicles appears to be
practical at ranges from up to 900 meters from the sensor.

*Excellent growth potential based on reporting of tied[voting classes appears indicated for future multitarget
discrimination requirements.

More detailed conclusions and a number of technical recommendations

are presenteJ1 in Section 8.

1.3 REPORT ORGANIZATION

The remainder of this report is divided into the following

sections:
Section 2 - Describes the six-class seismic/acoustic data

base and its distribution according to site,
target type, target speed, and range from
sensor.

Section 3 -Presents the details of the simulations of
the Sylva.nia and Honeywell classifiers.
Results are shown in confusion matrices
listed by location.

Sect ions
4 and 5 -Give the results of the cluster analysis of

the five feature sets and show intra- and
inter-class separability. Also, reduced
dimensionality plots are presentedj for visualization purposes.



Section 6 - Presents results obtained with the four
Sylvania and Honeywell classifier,, after
regeneration of weights in these classifiers.
The architecture of five new seis:nic/acoustic
classifiers using a composite feature set
is described and comparative results are
presented.

Section 7 - Presents a comparison of the cluster analyses
of the various features.

Section 8 - States the major recommendations of this study.

A

12



2. SEISMIC/ACOUSTIC FIELD-RECORD DATA BASE

2.1 INTRODUCTION

The data base used J½n this study consisted of a total of 671

seismic and acoustic signatures representing six major target

categories. Each signature consisted of a data epoch of 10
seconds duration (that is, 10 simultaneous seconds for the
seismic ard acoustic wavefornm1;).I/ The sampling rate was 2,000

Hz for both waveforms. These data were Provided by MERDC

as a set of four digitized magnetic tape reels compatible with

CDC 6000 series comnputors.

An identification log was created (based on the information
provided by MERDC for each of the 671 signatures) so that each

waveform could be identified by target class, site, speed,

stake number, acoustic and seismic gains, and direction of

travel relative to the sensor. A listing of this log appears

in Appendix A.

2.2 SIX TARGET CLASSES

The classes for target discrimination are the six shown in

Table 2.1. The class number will be used as a convention
throughout the remainder of the report, i.e., Class 1 denotes
tracked vehicles, Class 2 denotes wheeled vehicles, etc. Each

of the signature identities in the data log is tagged with a

class number.

Once a data log was created, the data base was interrogated to

determine the number of target classes that were represented at

each site in order to determine the class composition by target

type. Table 2.2 provides this information.

The exact signature duration was 10.08 seconds; however the
epoch length will be referred to as 10-seconds for reading
ease throughout this report.

13



TABLE 2.1

SIX TARGET CLASSES

Class Number Type Abbreviation

1 Tracked Vehicle TV

2 Wheeled Vehicle WV

3 Fixed Wing Aircraft FWA

4 Rotary Wing Aircraft RWA

5 Personnel PER

6 Nuisance NUS

14



The composition of the data base is shown in Table 2.2.

Data were recorded at three site~s: Yuma, Grayling, and Ft.

Bragg; and signatures from Classes 1, 2, and 6 wer~e available

at all three locations. Aircraft data, Classes 3 and 4, were

available only at Ft. Bragg, and Class 5 data was available

only at Yuma. Historically, the most difficult classes to

discriminate have been Classes 1 and 2; the majority of records

in the data base were from these two classes; 338 of the 671

signatures (about 50 percent) were Class 1, 28 percent were

Class 2 and the remainder of the data were spread among the

other four classes. (Seventy-two percent of the Class 1 data

were recorded at Yumna).

Class 1 was composed of heavy and light tracked vehicles, i.e.,

type M48, M60, M107, and M113, in which M48 and M113 signatures

were available fjcom all sites. A variety of heavy and light

wheeled vehicles were recorded for Class 2, i.e., type M151,

M715, M792, T2.5, and T5.0, in which M151 and 2.5-ton truck

signatures were available from all sites. The aircraft data

were quite limited with respect to type; Class 3 was composed

of types OV-10 and TA-4; Class 4 was composed of type UH-1.

Three types were observed in Class 5: 3ae man walking (Hi),i

three myen walking (113), and five men walking (115). Class 6

data were composed of only 18 signatures.

The signatures generated by different targets are a function

of many variables. Of primary importance are target speed and

distance from sensor (i.e., range). Many combinat-ions of these

two conditions were available in the data base. Table 2.3

shows the speed versus range distribution for land targets

and Table 2.4 shows the speed versus altitude distribution f'or

air targets.

15



TABLE 2.2

DATA BASE COMPOSITION

CLASS

( 12 3 4 5V

VU14A 243 a? 0 0 45364
'rPAYLrt4G 55 70 0 0 a it 136
rT.BRAGG 40 39 54 36 0 2 171

338 191 54 36 34 is

- ~~~~CLASS I COMPOSiTON.............-

M48 M60 M107 M113
YUNA 61 65 47 70 243
rRPAYLING 25 0 a 30 S5
F V.BRAGG 14 0. 0 - 26.. 40

(*.10 65 47 126

C CLASS 2 COMPOSITInN

MI5 SI 715 47Q2 T2*5 T5*0
VU14A 16 17- 28 21 0 82
rgAYLTNG 20 0 a 25 25 70
CTRRAGG 1s 0 a 21 039

5i t7 28 67 25 .- -

CLASS 3 COMPOSITION

OV-1 0 -- TA-4

FT.ORAGG 33 21 54

C CLASRS 4 CCMPtOSIT!ON

U H-i 3
T, OR BAGG 36 -- 3

ft LA SI COMPOSITION

014 to8i 6 34.

10 1s 6

CLAS! 6 COMPOSITION

vUuqA 5 5
nPAYLING It 11

rTBAG 2 2
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TABLE 2.4

SPEED VERSUS ALTITUDE DISTRIBUTION FOR AIR TARGETS

Speed Altitude ( Feet)
Class (Knots) 200 400 600

3 120 4 4 4
150 4 4 4
180 3 4 2
250 2 4
300 4 3
450 4 4

4 60 5 51
80 5 4 4

100 4 4 5

9 18



2.3 FORMAT OF SEISMIC/ACOUSTIC SIGNATURES

2.3.1 Ceophone and Microphone Specifications

The geophone used to record the seismic data was the HS-1,

with a sensitivity of 0.3 V/i.n/sec, a resonant frequency of

7 Hz, and a 70 percent damping ratio. The microphone was a

B and K Model 4133 (1/2-inch). A B and K Model 4135 (1/4-inch)

microphone was used for two of the runs. Both microphones

have a sensitivity of 1.25 mv/pbar and a flat response from

39 Hz to 40 k~z. The acoist c pre-amp was the B and K M''odel

2619. Rockland filters, used on the acoustic recordings, had

passbands of 5 to 5,000 Hz at Graxyling and 5 to 500 Hz at Yuma

and Ft. Bragg.

2.3.2 Digitization Steps

The signals produced by tile geophone and microphone were ampli-

fied and recorded on a seven channel analog recorder at 15 inches

per second. (The amplification factors are listed in the data log

shown in Appendix A.) Most of the seismic signatures were

recorded at 70 db gain, whereas the acoustic gains varied from

16 db to 70 db. A low gain seismic channel and an additional

microphone channel were also recorded but not used in the present

study.

Both seismic and acoustic signatures were digitized at a rate

of 2,000 Hz by a 16-bit Sigma minicomputer and written in

multiplexed form on magnetic tape. It was determined from the

calibration signals that there was a -4.44 db attenuating factor

to the seismic channel and a 2.0 gain factor to the acoustic

channel in the data acquisition system.

19
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The magnetic tapes produced by the Sigma minicomputer were made

compatible with a CDC Cyber 70 system having a 60-bit word

length. The least significant bit was dropped and four multi-

plexed 15-bit words were packed into each 60-bit word in order

to conserve tape footage.

The digitization and packing of the 60-bit word tapes were per-

formed by USAMERDC. A diagram of the digital tape evolution is

shown in Figure 2.1 and the format of the packed word is shown

in Figure 2.2.

2.4 TARGET VEHICLE SITES

The data base was recorded at the Ft. Bragg, Grayling, and

Yima test sites. Sketches of the instrumentation configura-

tion at each of these sites are shown in Appendix B. The

acoustic recordings used in this study were those taken from

the microphone nearest to the road. The distance between

transducers was 20 meters at each site.

Range stakes were used to indicate the approximate distances of

land vehicles from the sensors. These stakes were placed at

increments of 100 meters along the road, as indicated on each

of the site die::rams (Appendix B). The stake numbers were

recorded for each signature and entered into the data log

(Appendix A). These stake numbers were converted to approximate

range in meters.
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3. CLASSIFIER SIMULATIONS

3.1 INTRODUCT ION

Digital simulations were created for the prototype hardware

devices listed in Table 3.1. The intent of the simulation was
to mimic the analog circuitry as close as possible (using the

classifier weights listed in the respective manufacturer's final

technical reports) to evaluate the performance of each classifier

on an independent set of field data.

The simulations were written in FORTRAN source coce and were

performed on a CDC Cyber 70 computer. Listings and card decks

have been given to Dr. Richard K. Young, UASMERDC, Ft. Belvoi'r,

Virginia.

3.2 SYLVANIA STC AND SATC SIMULATIONS

Available information u:.s,.ed in performing simulations of the

Sylvania classifiers was obtained from References 3 and 11.

Information was also gathered via telephone conversations with

Mr. M. D. Layman, Technical Director of the Sylvania STC and

SATC projects. Additionally, the schematic diagrams for the

SATC were provided by Dr. Richard K. Young of MERDC.

TABLE 3.1

SIMULATE.1D TARGET CLASSIFIERS

Seismic Acoustic. Total
.ontractor Type I",atures Features Features

Sylvania STC 1/ 7 0 7

Sylvania SATC 2/ 4 3 7

Honeywell STC 12 0 12

Honeywell SATC 12 6 18

1/ Seismic Target Classifier.
/Seismic/Acoustic Target Classifier. Syl'ania has redesigned

this SATC using a feature computed from the automatic gain
controls circuits. This AGC feature was not used in our simulations.

Preceding page blank 23



3.2.1 Sylvania STC and SATC Feature Extractors

The Sylvania STC and SATC both extracted seven features from the

input signatures. These features are listed in Table 3.2.

It can be seen that there are four seismic features common to

both classifiers.

The feature extractor block diagrams for the Sylvania STC and

SATC are shown in Figures 3.1 and 3.2, respectively. The

feature extractors are composed of automatic gain control

(AGC) circuitry, full- and half-wave rectifiers squaring

functions, and high and low pass filters.

Both the rectifier and squaring functions are easy to implement

in a.digital computer. The AGC was simulated by analyzing the

schematic diagram of the SATC. Its action is to maintain the

amplifier output constant at 3 volts peak. The filters were

simulated by first writing the transfer functions for each and

then deriving the appropriate difference equations. Appendix C

presents these difference euqations plus a flow c6art for

the feature extractor simulation ilLustrating the filter transfer

equations.

Both of the Sylvania classifiers use manual gain settings which

may be present at each target site. These were maintained

constant while processing the 671 signatures. The seismic and

acoustic gain settings were fixed at 98 db and 66 db, respectively.

Each signature tape was "de-gained" so that the seismic and

acoustic signal voltages would match those produced by the

field transducers. Extensive testing was performed to ensure

that the digital programs properly mimicked the operation of

the analog feature extractors. An eight-channel Brush chart

recorder was used to monitor the response of different test

signals at various probe points in the simulated network.

24



TABLE 3.2

SYLVANIA STC AND SATC FEATURES

Range
Classifier Feature Definition (Volts)

STC 1. Low Band Envelope 0-6
2. Low Band Envelope Variance 0-6
3. Wide Band Envelope 0-6
4. Wide Band Envelope Variance 0-6
5. Frequency 0-6
6. Frequency Variance 0-6
7. Variance of Frequency Variance 0-6

SATC 1. Seismic Low Band Envelope 0-6
2. Seismic Low Band Envelope Variance 0-6
3. Acoustic High Band Envelope 0-6
4. Acoustic Wide Band Envelope 0-6
5. Seismic Frequency 0-6
6. Seismic Frequency Variance 0-6
7. Acoustic Low Band Envelope 0-6

I
,I
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Some examples are shown in Appendix C. Also, each filter was

tested at its cutoff frequency with a sine wave input for the

-3 db point. The higher frequency filters tended to give

a slightly attenuated response because the shape of the sine

wave became slightly distorted as the test signal frequency

approached the sampling rate. However, this result is to be

expected in a digital simulation and is not considered to be

a serious deficiency.

The AGO was tested by observing the response of the low and

wide band outputs to different amplitude sine waves at various

frequencies. It was found that the AGC response was acceptable

in the frequency range of interest. I-

The final tests were made by checking the response of each

feature to a sinusoid, after amplification, and comparing the

results with those specified in the manufacturer's report.[ ~Close agreement was found. t
At the beginning of each 10-second target observation, all

filters in the simulation were initialized to zero. During each

10-second epoch, each feature value was continually developedI
and these values were tabulated every 0.72 second. Three sets

of features were computed for each signature for two cases:

each feature was weighted and summed over the 14 0.72-second

time increments, then normalized by the sum of the weights.

The jth feature is thus given by:

14

j 14P
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In one case the weighting vector (w) was equal to time, t, in

seconds, over the 10-second epoch. In the other case, w was

equal to the value of the wide band envelope. The third set

of features was equal to the feature values that were fully developed

at the end of the 10-second epoch. All three sets were tested with

the classifier weights. It was found that the third set yielded the best

results in the Sylvania simulation, so it was used for the

remainder of the study.

The sampling rates for the acoustic and seismic channels were

2,000 Hz and 500 Hz, respectively, for the simulated Sylvania

feature extracter. Therefore, every acoustic and every fourth seismic

data points were chosen from the input tapes.

After the simulations were performed, it was noted that some

feature values (mostly low band envelope and variance) asso-

ciated with the heavy tracked- and wheeled-vehicle targets

assumed values larger than the 6-volt capacity for their

envelope and variance features. This happened when the AGC

was unable to attenuate large signal amplitude bursts withia

the epoch at a sufficiently rapid rate. These features were

clipped at the 6-volt level. This occurred for a number of

Class 4 data at Ft. Bragg and for 5-ton trucks and M48's at

Grayling.

The overall effect of this clipping is not known; however,

it is possible that it might have resulted in a change in the

feature space. This should be investigated in future analyses.

3.2.2 Sylvania STC and SATC Classifier Logic

A2 described, the feature values at the end of the 10-second

epoch were used in conjunction with the classifier weights

supplied in Sylvania's Final Technical Reports, to implement

the linear equations

d a + a x + a x ai. X
i io ii 1 i2 2 n
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where d. is the decision logic for Class i (i 1, , 6);

ai0, ... , ain are the classifier weights; and xI, ... xn are

the computed feature values.

The STC and SATC weights are given in Table 3.3. The constants

for the SATC were not given in Ref. 3. These were obtained

from Mr. Marv Laym.an of Sylvania via telephone conversation.

The Sylvania and Honeywell classifiers each use a two-stage classi-

fication procedure. A "target/no target" decision is made in

the first stage -- the "no target" decision signifying Class 6

(NUS). A five-way discrimination is then made in the second

stage if a "target present" decision is reached in the first

stage. The first-stage decision is "target" if the output

of the first-stage classifier is positive and "no target" if

this output is negative. In the second stage, the maximum

of five individual subclassifier outputs is selected as being

the best indicator of the target class.

3.3 HONEYWELL STC AND SATC SIMULATIONS

The material available to Adaptronics, Inc. for simulation of

the Honeywell STC and SATC was contained in Refs. 9 andll. In

addition to these publications, the Honeywell seismic and seismic/

acoustic feature extractor and classification programs were

supplied by USAMERDC. The feature extractor programs and the

classification programs were written in SDS 9300 FORTRAN.

Telephone conversations were held with Mr. R. R. Roth of

Honeywell concerning: (1) data preprocessing procedures needed

for the simulation, (2) the weights to be used in the classifiers,

and (3) certain aspects of the simulation programs written by

Honeywell.
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The Honeywell simulation wLsrmade compatible with the

CDC 6000 series compute:ýs. The primary ta •k was the conversion
of the seismic/acoustic fea-ture extraction program to CDC
FORTRAN. The contents of t he Honeywell reports indicated that

their SATC design resulted fromtheaddition of six acoustic

features to the 12 STC fea..tures. Table 3.4 shows the features
employed by the Honeywell ETC and SATC, and the weights employed

in the classifiers are shown in Table 3.5.

Next, computation steps for- obtaining the feature values were

compared with the hardware block diagrams, as well as the feature
extractor simulation progra-xto verify that the sequences of

filtering, rectification, aLnd amplification of the signals were
properly cascaded. The for-ns of the difference equations used
in the feature extractor pr-ogram were re-derived and compared
with the program listings t o ensure correct coding. After

verifying that the listings compared well with the hardware
feature extraction processe-s, conversion of the Honeywell

seismic/acoustic feature e,-tractor program to CDC FORTRAN was

done.

Tests were made on the con-erted program by using input signals

of known form and by prirnting output values from various points
in the simulation program which represented feature values. The
feature extractor program ncluded a provision for utilizing

data recorded with high or low gaines. However, since the field

data were recorded at a sinigle gain, this portion of the program
was not exercised.

The Honeywell classifiers usea "on-off" and "adaptive threshold"

criteria to limit the operaDtion of the feature extractor in

crder to increase battery life. The setting of the threshold

values depended on the lone--term average signal level. Since
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TABLE 3.4

HONEYWELL STC AND SATC FEATURES

Type. Feature Definition Range

STC, 1. Zero Crossing 1 0-1,240
2. Zero Crossing 2 0-220
3. Zero Crossing 3 0-49
4. Zero Crossing 4 0-105
5. Time Between Events 1 0-45
6. Time Between Events 2 0-10
7. Time Between Events 3 0-14
8. Time Between Events 4 0-21
9. Smoothness 0-46
10. Duty Cycle Consistency 0-397
11. High Frequency Energy 0-30
12. Low Frequency Energy 0-40

SATC 1. Zero Crossing 1 0-1,240
2. Zero Crossing 2 0-220
3. Zero Crossing 3 0-49
4. Zero Crossing 4 0-105
5. Time Between Events 1 0-45
6. Time Between Events 2 0-40
7. Time Between Events 3 0-14
8. Time Between Events 4 0-21
9. Smoothness 0-46
10. Duty Cycle Consistency 0-397
11. High Frequency Energy 0-30
12. Low Frequency Energy 0-40
13. Zero Crossing 1 0-2,518
14. Zero Crossing 2 0-944
15. Zero Crossing 3 0-516
16. Zero Crossing 4 0-?28
17. Duty Cycle Consistency 0-466
18. Roughness Count 0-467
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the data represented discontinuous 1O.-sec,;nd epochs, one-third

of the data was often required to establist, the threshold values.

This limited the actual interval for feature extraction to

times of much less than 10 seconds. For tibis reason, the simu-

lation of the on-off criterion was not performed, thus enabling

I full 10-second feature extraction.

Prior to the decision to not model th~a "on-off" and "adaptive

~ I threshold" criteria, tests were performed using signals of the
same frequency but of different ampl.Ltude, to determine how

feature development was affected bý .,.Ae on-off criterion. These

tests showed that feature development exhibited a nearly linear

relationship to the length of time the features were extracted.

This indicated that the Honeywell features were dependent on the

signal frequency and independent of the signal amplitude.

The effect of sampling frequency on the feature values was examined

by using sampling frequencies of 2,000 Hz and 1,000 Hz for the

acoustic and seismic channels, respectively, as well as 1,000

Hz and 500 Hz, respectively. It was found that the feature values,

computed for a limited number of test records, varied by five percent

or less. Therefore the simulations were performed uising the lower fre-

quencies of 1,000 Hz and 500 Hz for the acoustic and seismic channels.

The Honeywell classifier was designed to perform successive J

classifications on a continuous segment of data lasting signifi-

cantly more than 10 seconds, using certain "game rules" toX

select a class for transmission. The data used for simulationj

normally consisted of isolated intervals of 10 seconds, making

it impracticable to employ these game rules in the simulations.

Thus, the features extracted at the end of each 10-second epoch

formed the basis for classification in the simulations.
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3.4 SYLVANIA AND HONEYWELL STC AND SATC SIMULATION RESULTS
AND SUMMARY

The complete file of 671 field data records was used to obtain

the ..lassifications made by the Sylvania and honeywell STC and

SATC simulation programs. Confusion matrices were generated

for each of the four classifiers. These matrices are presented,

by site, in Tables 3.6 through 3.9. The diagonal elements

of each matrix are the numbers of correct decisions. The class

total is the row sum (i.e., the sum of the targets in the true

class). Individual target class accuracy represents the number

of correct decisions for a given class divided by the total numberrof records for which a target in that class existed. The site

accuracy is the sum of the diagonal elements divided by total

number of elements in the confusion matrix for a given site.

The overall accurac, listed at the bottom of the page, is the

ratio of the total number of correct decisions to the total

number of decisions.

It can be seen that the simulation accuracies are quite poor

and do not correspond to the accuracies given in the

manufacturer's technical reports. Each classifier exhibits

considerable site dependency. The Sylvania STC decisions are

heavily biased toward wheeled vehicles, and the Honeywell SATO

decisions are heavily biased toward personnel. The Sylvania

STC had the best overall accuracy of the four, i.e., 43 percent.

(This may be due to the fact that this classifier was synthesizedI
using data that, was recorded at 23 different locations.)

The results given in Tables 3.6 through 3.9 show that low accuracies,

severe biases, and considerable site dependencies are associated

with all four classifiers.
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4. DETERMINATION OF DATA BASE STRUCTURE VIA CLUSTER ANALYSIS

4.1 INTRODUCTION

Cluster analysis encompasses many diverse techniques for discover-

ing structure within complex bodies of data. In a typical example,

one has a sample of data units (subjects, persons, cases) each

described by scores ic, selected variables (attributes, character-

istics, measurements). The objective is to group either the data

units or the variables into clusters such that the elements within

a cluster have a high degree of "tnatural association" among them-

selves while the clusters are "relatively distinct" from one

another. The approach to the problem and the results achieved

depend principally on how the investigator chooses to give

operational meaning to the phrases "natural assocation" and

"relatively distinct".

In cluster analysis, little or nothing is known about the category

structure -- that is, the natural groupings or classes of the data.

The objective is to discover a class structure that fits the
observations. The essence of cluster analysis might be viewed as

* assigning appropriate meaning to the terms "natural groups" and
"Inatural association".

* A cluster algorithm can assemble observations into groups which

* prior misconception and lack of understanding would otherwise

precludle. A cluster algorithm can also apply a principle of

grouping more consistently in a large problem than can a human.

A series of interconnected hypothesis may suggest models for the

mechanism generating the observed data. Cluster analysis may,

therefore, be used to reveal structure and relationships in the

data--it is a tool of discovery.
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This is the spirit of its use in this study. The objective was

to determine the extent of homogeneity within each of the six

target classes. If the multivariate data for a given class yield

one cluster containing most of the observations, the hypothesis

of homogeneity is confirmed. If two or more clusters are found

is rejected. In the latter case, the conclusion that two or more

prototype waveform signatures exist within the given target class

is justified.

4.2 SUMMARY DESCRIPTION OF THE CLUSTR ALGORITHM

The algorithm for determining the data clusters can be summarized

as follows. The first data sample is introduced and the first

cell is centered at this point. The cells are hyperellipsoids,

and their initial radii (principal axes) are preselected. The

birth of each cell defines a new cluster in the space. The next

sample is presented and it either falls within the boundary of

the existing cell, within a "guard zn" surrounding the cell, or

outside of the guard zone so that a second cell is generated and

centered at this point. Similarly, all succeeding points either

fall within one of the cells in existence at that time, within

their guard zones, or determine the generation of new cells. When

a point falls within a cell, the cell's location (its mean) and

radii are changed to accommodate this new point. The cells thus

locate themselves at the dense regions (modes) of the data and

assume a shape which conforms to the spread of data about these

modes.

The algorithm therefore examines the geometric interrelationships

of the multivariate data, and finds clusters of data which are

very close to one another, and hence very similar. Five results

are reported:
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1. The number of cells

2. Their (N-dimensional) location

3. Their (N-dimensional) shape

4. The identity of the data points in each cell

5. The amount of overlap existing (if any) between cells

These results yield the following information about the data space:

* The structure of *he space

* The presence of noisy data

6 The number and type of operating regions of the
process which generated the data

• The presence of non-stationary (time-varying) conditions

CLUSTR is a one-pass, non-iterative algorithm; hence, convergence

to the final result is rapid. The control constants which govern

the birth rate, growth rate, and shape of the clusters are computed

from the data.

The CIUSTR algorithm was used five times in this study to assess

the degree of similarity between classes, using data bases con-

sisting of features from each of the four prior-existing classifiers

and using the combined Sylvania and Honeywell seismic/acoustic

features.

4.3 RESULTS OF CLUSTER ANALYSES

The cluster algorithm was used to group the data into cells for

each of the six target classes and to determine the amount of

overlap between the cells.

Clustering of the data by classes was accomplished by organizing

the data according to classes and then allowing the cluster

algorithm to form cells from one class data. independently of cells

formed from other class data. Thus, the cells formed never contained
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points from more than single target class. This approach,

rather than the approach of clustering of all data as a single

class, was taken becarse it was caj.&ble of providing more informa-

tion on the similarity or dissimilarity of data within a single

class. The overlap analysis portion of each cluster run

resulted in a statistical measurement of the degree of overlap

or separat'Ln between cells formed in the particular cluster run.-1
All cells, regardless of the class to which they belonged and as

long as they met minimum size criteria, were compared with other

cells to determine the degree of statistical overlap or separa-

In the analyses, many cells were formed that contained only a few

points; such cells were not taken into consideration in the results

to be described nor were they included in the accompanying figure

or tables. No attempt was made to correlate these points with any

of the signal identification parameters.

4.3.1 Cluster Analysis of Honeywell SimcFaue

The 12 Honeywell seismic features (Table 3.4) were used to cluster

the datd base of 671 records. A total of 156 cells was formed

with 72.6 percent (487) of the data contained in the 25 largest

cells 'shown in Table 4.1. The other 184 points were distributed

among the remaining 131 cells, giving an average point density of

1.40. (Point density is defined as the number of points per cell.)

Table 4.1 identifies the number of cells containing a large number4

of points in each class aluing with the number of points contained

within each cell. I

A multivariate F-test was used to assess the probability of'

two cells being dissimilar at the 0.05 level of significance.
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The largest Class 1 cells did not exhibit strong grouping ten-

dencies either by vehicle type or by site. However, in the

large cells containing the Class 2 data, several cells were

composed predominantly of either 5-ton trucks or M151 vehicles

from the Grayling site. One cell in each Class 3 and one in

Class 4 contained a large majority of the fixed-wing and

rotary-wing data, respectively. (Recall that Class 3 and

Class 4 data have no site variability because all records

for these classes were obtained at a single site.) Two of

the three major cells in Class 5 (Cells 12 and 15) were com--

posed solely of 1- and 5-human records, respectively. The

most populated Class 5 cell was composed of nearly all 3-human

records. The cells in Class 6 grouped nuisance records by site.

The results of the overlap analysis portion of the cluster

algorithm are shown in Table 4.2. Whenever two cells have

been computed to be statistically separable at the 95 percent :
confidence level (via a multivariate F-test), an asterisk has

been placed in the appropriate location in the table. Resul~cs

of the overlap analysis show that the two most populated Class 2

cells are not separable from each other and that neither of

these cells is easily separated from Class 1 cells. However, .
both cells are separable from the most populated Class 1 cell.

This means that the 12 Honeywell seismic features are not, inI
general, good tracked versus wheeled vehicle discriminators.
Only the major cell from Class 4 shows good separation from the

populous cells of other classes. This means that rotary-winged

aircraft can be well separated using these features.

These conclusions are supported by the confusion rnaLrices in

Table 3.8; only 1 percent and 14 percent of the tracked and

wheeled vehicles were correctly classified, respecttively, while

the aircraft classifications were 76 and 78 percent correct,
respectively.
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4.3.2 Cluster Analysis of Honeywell. Seismic/Acoustic Features

The 671 records containing the 18 Honeywell seismic/acoustic

features clustered into 123 cells. The 17 largest cells, included

in Table 4.3, contain 73.3 percent (492) of the 671 records.

The remaining 179 points are distributed among 106 cells for an

average point density of 1.69.

The second largest tracked vehicle cluster, Cell 69, has 93.4

percent of its points from Yuma. Eighty percent of the points

in this cell are those arising from M113 records, and the records

not from Yuma were also M113 records. Seventy-one percent of the

data in the cell were M113 records from Yuma.

Cell 70 has 75 percent of its points from Yuma. Cell 106 is

composed of M48 records from Grayling.

The largest of the Class 2 cells contains 71 points, with 20,

32, 13, and 6 points representing, respectively, the following

vehicle types- M141, 2J-ton truck, M792, and M15. Cluster Cells

63 and 64 are composed of 5-ton truck signature features and.

cluster Cell 59 is composed of 2*-ton truck records from the Ft.

Bragg and Grayling sites.

The largest cells for Class 3 and Class 4 data contain about

three-quarters of the data in the respective classes. The Class 6

data are grouped into three distinct cells -- one cell for

nuisance records from each of the three sites.

Examination of Table 4.4 indicates that the largest cells of Class 4

are separable from most major cells of all the remaining classes.

None of the remaining major cells shows such a marked degree of

separability from other cells. The confusion matrices in Table 3.9

support this data structure analysis -- the 27 Class 4 records are

correctly classified, while almost all other targets are misclassified.

These features were the worst performers (only 9 percent overall

accuracy).
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4.3.3 Cluster Analys~is of Sylvania Seismic Features

Tbe4.5 shows the 18 largest cluster cells formed for the six

target classes using the Sylvania seismic features. These cells

contain 427 or 63.6 percent of the entire data base. The

remaining 244 points are distributed into 143 cells for an average

point density of 1.71.

Fifty-two percent of the Class 1 data are contained within the

most populated cell, Cell 87. Approximately 70 percent of the

F M60's and M113's, and 31 percent and 47 percent of the

M48 and M107 data, respectively, are contained in this cell.

Eighty-three percent of the records in this cell were obtained at
the Yuma site, as compared to the 72 percent representation of

Yuma data in the entire data base. The second la~rgest cell, Cell 88,

I consists primarily of M48 and M113 Ft. Bragg records.

K In general, the compositions of Class 2 cells fail to show

any large incongruities between the distribution of the Class 2

data base and cell structures. However, 76 percent of the 5-ton

truck data from the Grayling site, the only site from which 5-ton

data were available, are clustered together.I

Class 3 and Class 4 data clustered tightly, with all the points

in the latter clustered into a single cell. The clustering

of Class 5Sand Class 6 data did not show any strong grouping

tendencies.

Table 4.6 presents the separability of the cells in Table 4.5.

It shows that the large cell of Class 1, Cell 87, is separable from

most other large cells, and that Class 3 and Class 4 data are sep-

arable from each other. These results are confirmed by the confusion

matrix of Table 3.6 which shows that 117 of the tracked vehicles

were correctly classified.
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4.3.4 Cluster Analysis of Sylvania Seismic/Acoustic Features

Table 4.7 shows the 22 largest cluster cells formed for the six

classes of data using the 7 Sylvania seismic/acoustic features.

These cells contain 432 points, 64.4 percent, of the entire data

base. The remaining 239 points are distributed among 134 cells,

for an average point density of 1.78.

The largest Class 1 cell, Cell 70, contains 88 points (26 percent)

of the 338 Class 1 points in the data base. Approximately 91 per-

cent of the points in the cell are from the Yuma site. Cluster

Cell 111 is also predominantly composed of M113

records from the Yuma site: 17 of the 18 records (approximately

94 percent) are from the Yuma site. Cell 72 is also made up

predominantly of records from the Yuma site (approximately 83 per-

cent), or 14 of the 17 records in this cell. The points in Cell 72

are not predominantly for one type of vehicle.

The most populated Class 2 cell, Cell 21, consists primarily of

M792 records from the Yuma site and M151 records from the Ft. Bragg

site. Seventy-five percent of the M792 records, and 77.8 percent
of the M151 records are included in this cell. The points containedI
in Cells 23, 25, and 29 are composed, with the exception of a single

record, entirely of M151 and 2J-ton truck records. The proportion

of M151 records to 2J-ton truck records for the three cells are:

1,20, 0.20, and 4.0, respectively.

Data for the 5-ton trucks from the Grayl~ingsite form separate cells,

but are not included in the table of major cells nor in the separa-

bility figure.

Class 3 and Class 4 data form tightly grouped cells; however, none

of the cells contains a disproportionate number of points from a

particular type of aircraft, if more than a single type was present

*in the class. The cells of Classes 5 and 6 show little grouping f

tendency, except that some three-personnel points are separated.

The nuisance points from Ft. Bragg also form a distinct cell.
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Table 4.8 shows the separability of the large cells. Table

4.8 shows the cells of Class 1 are statistically

separable from the large cells of all other classes, while the

major cells of the remaining classes do not show as much separa-

bility amnong each other.

4.3.5 Cluster Analysis of Combined Honeywell and Sylvania
Fetres (2)

Table 4.9 shows the 20 largest cells formed for the six class cluster

analysis using the 28 unique seismic and acoustic features from

the Honeywell and Sylvania simulations. These 20 cells contain

560 (approximately 83 percent) of the 671 points in the data base.

P The remaining 111 points are distributed among 91 cells, for an

average point density of 1.22.

The most populated cell in Class 1, cluster Cell 57, contains

214 points (approximately 63 percent) of all Class 1 data, with

170 (approximately 79 percent) of the 214 points from the Yuma

site. Approximately 82 percent (103 of 126) of the M113 records

are contained in this cell. There is not a predominant vehicle

type in Cell 4; however, approximately 82 percent (27 of

33 points) in Cell 4 represent data from the Yuma site. i
Cells 5 and 63 consist entirely of M48 points from the Grayling site,

while Cell 1 is composed entirely of M107 records from the

Yuma site. Cell 2 has neither a predominant number of records
from a particular site nor from a particular type of vehicle.

Approximately one-half of the points (31 of 63) in the most popu-
lated cell of Class 2 are from 2,,-ton truck records. The 31 points

are distributed nearly evenly by site and by the fraction of total

21-ton truck records. The fifth Class 2 cell, Cell 44, has

11 of its 12 points representing 2J-ton trucks, while cells

6 and 7 (Cluster Cells 48 and 49) consist entirely of 5-ton truck

records from the Grayling test site.
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Class 3 data are found in one cell, as is all Class 4 data.
The latter -'esult ,was also found in the clustering of Sylvania
Class 4 data. Class 5 and Class 6 data do not show noteworthy
grouping tendencies.

Table 4.10 shows that the most populated cells of Classes

1, 2, 3, and 4 data are not statistically separable from each

other.

4.3.6 Summary of Cluster Analysis and Conclusions

The objective of the cluster analysis was to determine the extent

of homogeneity/heterogeneity of each of the five feature sets

within each of the six target classes. The most favorable finding

of the cluster analysis for the six-class discrimination problem

would be (independently of site):

. Intra-class homogeneity of features

e Inter-class heterogeneity of features

Of course, these represent idealized situations in which all points

within a class group in a single cell and the cell for each class

is distinct from all other cells. Such situations rarely occur with

field data.

The results of the cluster analysis exhibit some of the ideal

characteristics, but not to a sufficient degree to render the six-

class discrimination task easily manageable. A method of evaluating

the above two characteristics would be to consi~ler the size of the
most populated cell within each class and the separability of such

cells. Therefore, the more points from a given class contained

in the most populated cell, and the more distinct the cell is from

the others, the more easily one class is distinguished from the

other.
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Table 4.11 shows the population of the largest cells for

each of the six classes based on the five cluster studies. Classes

3 through 6 have been included in the table for completeness but

were not analyzed due to the small amount of data in both quantity

and variety.

Comparison of the most populated cells in Classes 1 and 2 of the

two Sylvania feature sets against the two Honeywell features sets

shows that the Sylvania cells for Class 1 contain more points than

the Honeywell cells, while for Class 2 the opposite is the case.

The numbers of points in the most populated cells for the combined

features resemble those in the four original feature sets.

The term "variety within a class" is used in the sense of different

types and motions of signature sources, different sites and dif-

ferent climatic conditions for targets within a given class.

Table 4.12 was obtained by examining the most populated cells in

each of the four original feature sets and tabulating the numbers

of points in common betw.,een these cells and those of the combined

the Sylvania feature sets have significantly more points in common

with the combined feature cells in the tracked vehicle classes

than do the Honeywell cells, while the converse occurs in the com-

parison of wheeled cells of the four feature sets with the combined

feature cells.

In conclusion, the Sylvania features show strong potential for

separating tracked vehicles (Class 1), while the Honeywell features

show strong potential for separating wheeled vehicles (Class 2).

Furthermore, the cluster analysis shows the Honeywell features to

be capable of finer discrimination on an intra-class basis, as

evidenced by cells with high degrees of homogeneity within a class
it also shows the Sylvania features to be capable of finer dis-

crimination on an inter-class basis. This latter conclusion is

supported by the large, but distinguishable, cells found for the

tracked vehicle class.
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TABLE 4.11

POPULATIONS OF LARGEST CLUSTERS IN EACH TARGET CLASS

Class
Feature Set 1 2 3 4 5 6

Honeywell STC 70 58 38 27 14 8

Honeywell SATC 96 71 41 27 12 11

Sylvania STC 186 23 29 36 10 7

Sylvania SATC 88 48 26 36 16 16

Combined Features 214 63 45 36 10 16

TABLE 4.12

INTERSECTIONS OF MOST POPULATED CELLS IN HONEYWELL AND SYLVANIA
FEATURE SETS WITH MOST POPULATED CELLS OF COMBINED FEATURE SIT

Feature Set Class I Class 2

Honeywell STC 65/70 = .93 47/71 = .66

Honeywell SATC 38/96 = .96 38/58 = .66

Sylvania STC 175/186 = .94 None

Sylvania SATC 73/88 = .83 17/48 = .35
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5. TABULAR CLUSTER LISTINGS
AND REDUCED DIMENSIONALITY PLOTS

5.1 MERGING OF STATISTICALLY SIMILAR CLUSTER CELLS

Part of the cluster analysis was to determine the statistical

similarity among the cells containing the largest number of

points (Section 4.3). Those cells in the same target class that

are statistically similar (based on a multivariate F-test) have

been merged to form larger cells. New mean (X) and standard

r deviation (E) vectors were recomputed for the merged cells.

Table 5.1 shows, for the five feature sets, the number of merged

cluster cells per class. The numbers in parentheses indicate

the fraction of data in the merged cluster cells relative to the

total amount of data in the class.

5.2 TABULAR CLUSTER LISTINGS FOR THE FIVE FEATURE SETS

A tabular listing was generated for the five feature sets to

identify the content of the cluster cells by target type, site,

speed, range, acoustic and seismic gains, and target direction

of motion. In addition, the X and E vectors were printed showing

their positions in N-dimens.ivnal space. (Due to the length of

these listings, they do not appear in this report. However,

copies have been provided to Dr. Richard K. Young, USAMERDC,

Ft. Belvoir, Virginia; and Dr. Ted Gif ford, REMBASS PM, Ft.I

Monmouth, New Jersey.) An example for a typical cluster cell

is shown in Table 5.2. Definitions for the various fields are

given in Table 5.3. (The merged cluster cells have been used

for these listings.)
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TABI 5.3

DEFINITIONS FOR TABULAR CLUSTER LISTING

Identification
Number Definition

1 Title

2 Cluster Cell Number.
(Cells with less than 5 hits have been
excluded from this printout.)

3 Hits: Number of Signatures in Cluster

4 MERDC ID Number

5 Class Number

(a) 1 TV
(b) 2 WV
(c) 3 FWA
(d) 4 RWA
(e) 5 PER (Hi, H3, H5)
(f) 6 NUS

6 Vehicle Type

7 Target Site

8 Target Speed. (mph for land vehicles
and personnel, knots for aircraft.)

9 Range (meters) or Altitude (feet).
For personnel, range is given as stake
numbers.

10 Acoustic Gain (db)

11 Seismic Gain (db)

12 Targec Direction

13 File Section. (Files longer than 10 seconds
were divided into 10 second epochs.)

14 Number of Signatures From Each Site

15 Number of Signatures From Each Target
Class. (In this study each class was
clustered separately.)

16 Number of Vehicles From Each Target Type
17 X Vector: Indicates the mean value for

each feature, or center of mass of the
cluster.

18 Signature Vector: Standard deviation
associated with the X vector.
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5.3 CORRELATION AND EIGENVECTOR ANALYSIS

As explained in Section 4.1, a cluster analysis is a valuable

tool for finding the structul' of a multivariate data base.

However, it is difficult to visualize a group of data clusters

in N-dimensions when N is larger than three. Accordingly,

the dimensionality of the cluster space has been reduced via an

Eigenvector transformation, for the purposes of visualization.

Such a task is feasible when the features exhibit high mutual

correlations, in which case the redundancy can be removed.

A correlation and Eigenvector analysis of the 671-record data

base was performed and high correlations between many of the

parameters were observed. Table 5.4 shows the correlation

matrix of the unique 28 Honeywell and Sylvania features which

are identified in Table 5.5. A separate Eigenvalue analysis

was performed for each of the five data sets. Table 5.6

shows the amount of explained variance for each of these sets

for each eigenvariable (1"z") parameter). Each eigenvariable

is a linear weighted combination of the original 28 features;
th

the weights for zk are the components of the k Eigenvector.

Over 94 percent of the variance is represented with two z

features for the Sylvania feature sets (Table 5.6). Therefore,

the Fylvania cluster can be reduced to two or three dimensions

with small distortion of interpoint distances. The Honeywell

features were less mutually correlated, so that z and -2 do

not account for as much variance as is the case for the Sylvania

features. However, over 70 percent of the variance is accounted

for by zI and z 2 for the Honeywell features.
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TABLE 5. 5

TWENTY-EIGHT HONEYWELL AND SYLVANIA COMBINED FEATURES

Counts/
Feature Feature Definition Epoch

Honeywell Seismic 1. Zero Crossing 1 0-1,240
2. Zero Crossing 2 0-220
3. Zero Crossing 3 0-49
4. Zero Crossing 4 0-105
5. Time Between Events 1 0-45
6. Time Between Events 2 0-40
7. Time Between Events 3 0-14
8. Time Between Events 4 0-21
9. Smoothness 0-46

10. Duty Cycle Consistency 0-397
11. High Frequency Energy 0-30
12. Low Frequency Energy 0-40

Honeywell Acoustic 13. Zero Crossing 1 0-2,518
14. Zero Crossing 2 0-944
15. Zero Crossing 3 0-516 I
16. Zero Crossing 4 0-328
17. Duty Cycle Consistency 0-466
18. Roughness Count 0-467

Volts
Sylvania Seismic 19. Low Frequency Energy 0-6

20. Low Band Envelope Variance 0-6 j
21. Wide Band Envelope 0-6
22. Wide Band Envelope Variance 0-6
23. Frequency 0-6
24. Frequency Variance 0-6
25. Variance of Frequency

Variance 0-6

Sylvania Acoustic 26. High Frequency Energy 0-6
27._WideBandEnvlope_0I

27. Lwid Band Envelope 0-6

Note that certain features identified by separate contractors :
are conceptually the same; however, their methods of extraction
were different and therefore all the features were included for
completeness. The similar features are:

Honeywell Seismic Zero Crossings - Sylvania Seismic Frequency

Band Frequency

Honeywell Seismic Duty Cycle - Sylvania Seismic Frequency
Consistency Variance

Honeywell Seismic High and Low -Sylvania Seismic Wide Band
Frequency Energy Envelope
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TABLE 5.6

EXPLAINED VARIANCE OF THE Z-PARAMETERS
FOR THE FIVE FEATURE SETS

z
Feature Set Parameter Explained Variance

Sylvania Seismic 1 .836551
"2 .945533
3 .965647
4 .983249
5 .999441
6 .999991
7 1.000000

sylvania Seismic/Acoustic 1 .6302822 .945747

3 .981310
4 .997267
5 .998974
6 .999512
7 1.000000

Honeywell Seismic 1 .538796
2 .791986
3 .865301
4 .905383
5 .934377
6 .95.4164
7 .970069
8 .981889
9 .989737

10 .995673
11 .998574
12 1.000000

Honeywell Seismic/Acoustic 1 .393631
2 .595473
3 .722784
4 .782288
5 .835100
6 .8741335
7 .932060

S8 .928955
9 .9.18531
10 .961205

11 .9723.10
12 .981633
13 .98696
14 .991925
15 .995971
16 .99 7917'
17 .999049

18 1.000000

Honeywell/Sylvania 1 .414540

Combined 2 .564610
3 .682408
4 .747074

5 .794903
6 .835086
7 .865469
8 .890200
9 .907269

10 .923146
11 .938231
12 .949391
13 .959661
14 .967579
15 .973191
16 .978376
17 .982428

18 .985824

19 .988871
20 .991538
21 .994072

22 .996058
23 .995711
24 .998452
25 .999016
26 .999517
27 .990823

28 1.000000
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5.4 REDUCED DIMENSIONALITY CLUSTER PLOTS

Each cluster cell in the original feature space may be transformed to

the (rotated and orthogonal) Eigenvariable z-space by Lhe operation:

N

z = uki X - X+]
max

N

k Uki i) - Xi]kmin i1

where z max and Zkmin are the maximum and minimum boundaries, respec-

tively, of the cell on the kth z axis (k=1,2,3), and

uki is the ith Eigenvector weight for the kth Eigenvector,

Xi is the ith mean value of the cell in the X-space,

Ei is the ith standard deviation of the cell in the X-space,

X is the mean value of the ith feature,i

N is the number of original features.

Figure 5.1 shows the cluster cells fronm the Sylvania seismic

feature sets plotted in two-dimensional Z space for every pair of

target classes. Notice that some classes are clearly separable

from other classes, for instance, Class 4 is distinct from Class 1

and Class 3. Other classes are very close together but not over-

lapping (at the one-sigma level). Thus, Classes 1, 3, and 5 are

sufficiently separated to permit accurate discrimination

However, some of the classes overlap one another extensively; e.g.,

Classes 2 and 4, 2 and 5, etc.
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I

The clusters shown in Figure 5.1 represent the major groups of data

for each target class (Table 5.1). The results of the reduced-

dimensionality cluster analysis agree well with the confusion matrices

found below for the Sylvania STC using regenerated weights (Table 6.8).

For example, consider the Class 2 cluster in the center of Class 4.

It can be seen from Table 6.8 that 19 of 43 Class 2 at Grayling

are misclassified as Class 4 targets. Similarly 10 of 36 Class 3

targets at Ft. Bragg are misclassified as Class 2. Thus, the

confusion matrix results are supported by the high degree of over-

lap as shown in Figure 5.1. Also, those classes appearing clearly

separable in Figure 5.1 are rarely misclassified (Table 6.8).

A cluster plot was prepared for the combined Honeywell and Sylvanis
feature set showing cell boundaries along the first three Z axes.

This plot is presented in Figure 5.2. The verical axis denotes

the number of members in a given cell. A logarithm scale was

chosen for plotting ease. The three Z axes represent approximately

68 percent of the variance of the feature set. The twelve rec-

tangles shown correspond to the merged cluster cells. (Note:

on the z2 axis, the three PER clusters were so close together

they are shown as one rectangle.) Although most clusters on a

single axis seem to overlap with those of another class, there is

actually a good degree of separability when all three axes are

considered. A necessary and sufficient condition for two cells to be

separable in N dimensions is that they are .parable on any one

of the N axes. For example, notice that Cell 1 (NUS) overlaps

with Cell 6 (FWA) and Cell 8 (WV) on z1, but on z2 it is separated

from these cells. Since the nuisance class only contains only this

one cell, this class is separable from both WV and RWA.
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FIGURE 5.2: REDUCED DIMENSIONALITY CLUSTER PLOTS ALONG THREE

Z AXES FOR THE HONEYWELL AND SYLVANIA COMBINED

FEATURE SET
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It can be seen from Figure 5.1 that a linear classifier could

be implemented for pairwise separation between the following

classes using the Sylvania STC features:

TV, RWA

TV, NUS

FWA, RWA

FWA, NUS

RWA, PER

PER, NUS

Thus, a linear classifier could be used for separating Class 1

from Class 3 and Class 3 from Class 5. However, these clusters are

very close together, and slight changes in the circuit parameter

of analog circuits could cause misclassifications. The following

remaining target classes can only be separated nonlinearly:

TV, WV

TV, PER

WV, FWA

WV, RWA

WV, PER

WV, NUS

RWA, NUS
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6. CLASSIFIER REGENERATION AND SYNTHESES

6.1 INTRODUCTION

The Honeywell and Sylvania STC and SATC classifiers have been

regenerated, i.e., optimized vis-a-vis the present field data,

and five new classifiers lave been synthesized by Adaptronics,

Inc. The number of sensor channel-, signal features, and

discriminant functions; and the type of discriminant function,

decision logic, and display for each classifier, are summaried

in Table 6.1. The weights for all nine classifiers were com-

puted from an identical design data base of 225 records and

evaluated on the remaining 446 records. This provided a common

design and evaluation data base for comparing the performance

characteristics ef the nine classifiers. The numbers of records

included in each class in the data bases are given in Table 6.2.

The records in the design set were selected at random, and repre-

sent about one-third of the data from each class.

Classifiers A, B, C, and D correspond to the classifiers simu-

lated in the work described in Section 3 of the report; however,

new weighting coefficients were computed from the design data

base. A single set of coefficients was obtained for classifiers

F and H since these classifiers differed only in the decision logic

and display method. A single set of nonlinear, adaptive learning

networks (ALN) was generated for classifiers G and I, since
these two differed in the same way as classifiers F and H.

A composite feature set for each record was produced by com-

bining: (1) 28 selected Sylvania and Honeywell seismic and

acoustic signature features, and (2) the acoustic-to-seismic

energy ratio. The last parameter was suggested by Dr. Richard K.

Young, USAMERDC Project Monitor. Dr. Young had observed in the

data collection and digitization process that the ratio of

acoustic-to-seismic energy showed promising potential as a class

discrimination parameter.
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7t 
rw'5

L TABLE 6.2

CLASS COMPOSITION OF DESIGN
AND EVALUATION DATA BASES

Class Design Evaluat ion

1113 225

2 64 127

3 18 36

4 12 24

5 12 22

6 6 12

TOTAL 225 446
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Root mean square (RMS) values were obtained for the two trans-

ducer channels during the simulation phase of the project, and

these were used to derive the 29th parameter value for each

record. The input RMS values were reduced to transducer output

RMS values, and the logarithm of the ratio of acoustic-to-

seismic energy transducer output values was used as the value
of the 29th parameter.

Classifiers E, F, and H employed linear functions of the 29

parameters in their discriminant functions, while Classifiers

G and I employed nonlinear combinations of the 29 parameters

for their discriminant functions. The values from the nire

Eigenvector transformations associated with the largest

Eigenvalues and the acoustic-to-seismic ratio described above

were used to generate the nonlinear discriminant functions.

(The Eigenvector analysis of the Sylvania and Honeywell features

was described in Section 5.1.) Thus, the 10 independent variables

used for the nonlinear discriminant functions of Classifiers G and I

were:

28

Suli xl
i = 1

28

i = I u 9ix i

x 10= x 29
ixi 0

where the x. are the 29 features while the x'. represent the

transformed inputs used to synthesize the nonlinear ALN

discriminant functions.
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6.2 LINEAR "ONE VERSUS FIVE" CLASSIFIERS

Classifiers A, B, C, D, and E are all linear "one versus five"

classifiers; that is, they used six discriminant functions with

7, 7, 12, 18, and 29 features, respactively. The discriminant

functions are of the form:

N
d i : w j + w. (i =1, 2, . ,6)

where N is the number of features in the discriminant function.

The weights in each function were computed by using the design[ data as input to a linear regression program. This program
computed the regression equations in a stepwise (i.e. , one

variable at-a-time) manner. At each step an additional vari-

able was added to the regression equation. The variable added

was the one which resulted in the greatest reduction in the

error sum of squares. The added variable had the highest partial

correlation with the dependent variable partialed on the p.,eviously
added variables. The dependent variable in all cases was

assigned a value of +1.0 for the category of interest.

In a "one versus five." type discriminant function, the data

for category one, 4+1.0 dependent variable value, were all from

the same class; data for category two, -1.0 dependent variable

value, were records from the remaining five classes. (In a "one

versus one" function, data in the second category would be

selected from only one other class.)

For example, to derive d, the function to discriminate Class 2 tar-

gets from targets of' the other classes (one versus five), a depen-.

dent variable, y, was added to each design data record. For Class 2

data, y was assigned a +1.0 value, while for all other classes

a -1.0 was assigned. The numerical imbalance between the

number of Class 2 data and the data of all other classes was

81



corrected by duplicating the Class 2 records until a numerical

balance was attained between the two categories. (The five
"fone versus five" discriminant functions were obtained via the

same technique.) The weighting coefficients obtained for

classifiers A, B, C, D, and E are shown in Tables 6.3 to 6.7

for the respective classifiers.

The six "one versus five" discriminant functions gave each

target clap-, one opportunity of being selected. A positive

discrimi' at function output was related to a single class,

while a negative output indicated the possibility of any one of

the other five classes as the source. The target class whose asso-

ciated discriminant function output value was the maximum of the

six discriminant function outputs was selected as the classified

target. Tables 6.8 to 6.12 are the confusion matrices obtained

by applications of the five classification procedures A, B, C,

D, and E to the evaluation data base (446 signatures). Comparing

these results with Tables 3.6 to 3.9 show a considerable classi-

fication accuracy increase.I 6.3 LINEAR "ONE VERSUS ONE" CLASSIFIERS

The linear "one versus one" (pairwise) discriminant functions

were drived using the same techniques as were used to derive the

linear "one versus five" discriminant functions. However, in
the design data, only two classes were represented at a timeI
rather than the six classes. Since there were six classes of

interest, K = 6 and all possible non-repetitive pairs of

classes were to be discriminated, the number of discriminant

functions was:

K(K-1) 6()=1
2 2

The classifier architecture is shown in Figure 6.1.
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Fifteen Pairwise
Discriminant

Input Functions Decision Estimated
Features (Subclassifiers) Votes Logic Class

1 vs. 3 SIN

xl
x2 Decision c

X= x 3 ogic

39

ivs. j

x 
29

SV5,

5 vs. 6

FIGURE 6.1: "ONE-VERSUS-ONE" (PAIRWISE) CLASSIFIER ARCHITECTURE
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The decision surface of each pairwise subclassifier is such

that one target class tends to be mapped into a fixed value

below its threshold and the other target class into a fixed value

above. The usual convention is that a pairwise discriminant

function attempts to map all class i members onto the number

+1.0 and all class j members onto the number -1.0, with the

discrimination threshold set midway between these two values,

i.e., set equal to zero.

In a pairwise test, the proximity of the computed discriminant

function output to one of the number +1 and -1 (i.e., the expected
outputs) governs the decision -- the threshold represents the

point of uncertainty. The closer the output is to either +1

or -1 (using a suitable metric such as squared normalized

difference), the greater the confidence that can be placed in the

consequent decision. A tie-breaking strategy that exploits

this confidence information is illustrated by means of the

following example.

Table 6.13 contains the hypothetical outputs of the 15 pair-

wise tests for one 10-second record. It can be seen that with a

threshold equal to zero, a positive output renders a unit "vote"

for Class i and vice versa for a negative output.. (The value

"i" is always less than "j"). In this illustrative example,

Classes 1 and 2 are tied with four votes each. Classes 3, 4,

5, and 6 are eliminated from further consideration.
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TABLE 6.13

ILLUSTRATION OF TIE-BREAKING STRATEGY

ALN No. Class i Versus Classj Output Winning Class

vs. 2 +1.01 1

2 1 vs. 3 +0.91 1

3 1 vs. 4 -0.13 4
4 1 vs. 5 +0.85 1

5 1 vs. 6 +1.15 1

6 2 vs. 3 +0.69 2

7 2 vs. 4 +0.71 2

8 2 vs. 5 +.87 2

9 2 vs. 6 -0.85 2

10 3 vs. 4 -0.88 4

11 3 vs. 5 +0.92 3

12 3 vs. 6 +1.00 3

13 4 vs. 5 -0.78 5

14 4 vs. 6 +0.91 4

15 5 vs. 6 +0.93 5

Voting Logic

Target Class No. Votes

1 4

2 4

3 2

4 3
5 2

6 0

11
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The following measure of confidence may be used in the case

of ties:

K(K-I)/2

m=1

where :
K = Number of classes

KA = Actual output for Class K

V = "Selection operation" Vm = 0 if Class k is not
involved in the mth test or if k is involved
but loses; Vm = I if Class k is involved in m test
and wins.

M is equal to zero if the actual outputs, kA, always equal
k 'A)

unity. Larger values of Mk usually denote weaker decisions.

Therfore, a tie-breaking strategy is to evaluate Mk for those

classes k in contention and to choose that class for which the

Mk value is smallest.

Continuing, for the example given in Table 6.13. the associated

M and M values for the tied Classes 1 and 2 are:
1 2

N1 = I-l.011 + 11-0.911 + 11-0.851 +11-1.151 =0.40

142 = 11-0.691 + 11-0.711 + 11-0.871 +11-0.851 = 0.88

Therefore, Class 1 is the classified target due to its obtaining

the larger degree of confidence.

The coefficients of tVie 15 linear discriminant functions are

shown in Table 6.14.
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Table 6.15 Dresents results obtained wilt Classifier F for the

data in the evaluation subset. This classifier employs the
"one versus one" architecture with the above tie-breaking

procedure. The discriminant functions are linear.

As an alternative to tie-breaking, it may be desirable to

report all classes reneiving at least V votes. Table 6.16

presents the results for Classifier H, which also uses "one

versus one" a-vhitecture and linear discriminant functions.

The classifie: -s regarded as having produced a correct response
whenever il. g-,':,erated at least four votes (V = 4) for the true

class. With this classifier, the following vote tallies are

obt.ained:

o 4 correct votes reported 55 times out of 446 cells
(12.3 percent)

o 5 correct votes reported 344 times out of 446 cells
(77.1 percent)

Thus, at least four votes were received for the correct class

on 399 records out of 446 in the evaluation data subset, or on

89.5 percent of the evaluation records.

It is also noteworthy that when it reported five votes for a

single class, Classifier H was correct on 344 out of 380 records
or 90.5 percent of the time.

V
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6.4 NONLINEAR "ONE VERSUS ONE" CLASSIFIERS

Nonlinear pairwise ("one versus one") discriminant functions

have been synthesized by combining pairs of inputs, xi and x., into

building-block polynomial elements according to the equation

y W= + wlXi + wxj + W3 xixj + w4 x + w xj

A nonlinear discriminant function may consist of layers of such
elements combined to model a given dependent variable. Each layer

may consist of as many elements as the number of pairwise com-

binations of the input parameters processed by that layer, but

only the most discriminating elements need be retained. These

elements may then, in turn, be used as inputs to the next layer

of the network. Reference 2 gives a concise explanation of

learning network theory and applications.

The Eigenvalue Analyses (Section 5.3) showed that a large pcr-

centage of the data variance for the combined feature set could

be explained or represented with a reduced number of new ortho-

gonal "Z" variables. Taking advantage of this fact, only ten

features were used to train the 15 nonlinear discriminant func-

tions. The first nine Z variables (of the 28 combined features),

representing 90 percent of the data variance, plus the acoustic

to seismic energy ratio (mentioned above) as the tenth feature.

In effect, all 28 Honeywell and Sylvania features are represerteO

in the nonlinear classifiers. The ith Z variables are given by:

28

Z. = u.
3j=1

where the u.. are the 28 Eigenvector weights for the ith z vari-

able and the x. are the 28 Honeywell and Sylvania features.
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Appendix D gives the Eigenvector weighting coefficients for the

first nine Z variables, and the structures of the 15 nonlinear

discriminant functions which have been synthesized. The weighting

coefficients are shown for each pairwise discriminator.

Two sets of confusion matrices have been generated for the non-

linear "one versus one" classifier. The first set, shown in

Table 6.17, was obtained by application of the tie-breaking

decision logic; and the second set, shown in Table 6.16, wa~s

obtained by the vote-reporting technique, as described above.

The misclassifications have been tabulated for the nonlinear

classifier using the tie-breaking decision logic (G) and are

shown in Table D.2 of Appendix D. The letters "D" and "E" iir.

this table, which appear under header word "SET," indicate which

signatures were used for "Design" or "Evaluation" of the classi-

fier. Range is given in meters for tracked and wheeled vehicles.

Figure D.16 indicates how the nonlinear classifier performed as a

function of range for tracked and wheeled vehicles. Tn the

figure, the blank bars show the distribution of signatures for

the two classes as a function of range from the sensor. Super-

imposed on each blank bar is the number of misclassifications

made for the appropriate class. It can be seen from this diagram

that the relative number of misclassifications is reasonably

independent of the rainge between target and sensor. Although only

a few signatures were available at high ranges, no misclassifi-

cations were made for tracked vehicles beyond 600 meters.
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7. COMPARISON OF CLASSIFIER RESULTS

In evaluating the performance of a classifier, three criteria

should be taken into consideration. These criteria reflect the

ability of a classifier to perform both accurately and consistently.

Thus the performance of the classifier is herein defined as the
product of three metrics: the classifier accuracy (A), the

consistency of the classifier accuracy (C), and the degree of

site independence of the classifier (S). These quantities were

explained in Section 1. The performance of the nine classifiers
were ccmputed from the confusion matrices of Section 6. The

results are shown in Table 7.1. In addition, the class accuracies

of all nine classifiers have been plotted in Figure 7.1. (The

abscissa of this plot is non-Euclidian.)

The performance of the nine classifiers demonstrates that a sig-

nificant increase occurs when the combined set of 29 parameters

is utilized. (It was observed in the discriminiation function

generation procedure that the acoustic-to-seismic energy ratic

was one of the first parameters to be selected in tbo linear

discriminant functions, and it was selected as a ke3 parameter

in 10 of the 15 nonlinear ALN discriminant functionE..) Classifiers

using all 29 parameters, whether in "one versus five" or "one
versus one" d-scriminant functions, all achieve accuracies in the

85 percent range. A further increase in classifier perforirgnce

is obtained when the alternative method of reporting ties is used.

The consistency factor, C, improvred with the addition of the

acoustic parameters to the Sylvania and Honeywell seismic para-

meters, and improved again as the classifiers using tiij combined

29 features were evaluated. The additional of the acoustic para-

meters also resulted in a decrease of the site dependency.

Prec uding page blank 10
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As indicated in Table 7.1, the highest accuracy and highest

performance attained were produced by classifier H utilizing

all 29 features in "one versus one" linear discrimination

functions -- reporting all classes receiving at least four votes. i
The accuracy of this classifier is approximately 90 percent

and its performance is approximately 0.8.
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1. CONCLUSIONS

A detailed study has bk.en performed of the REMBASS six-class

seismic/acoustic target classification problem. It has been

demonstrated that a six-way classifier can be realized that,

in simulations, exhibits improved overall accuracy, improved

site independence and improved class invariance, and improved

range invariance. The specific conclusions reached in the

course of this study are:

1. An average single epoch classification accuracy
of 85 percent -,an be realized with a practicable design.

2. The above accuracy is achieved with high consistency
at different sites and for the different target~
classes, and the classifier is relatL-ively insens4itive
to target range (out to the periphery of the target
detection zone) and the speed, altitude (where
applicable), and heading of the target.

3. If the combined set of 28 features from prior
Honeywell and Sylvania designs is used with an1. additional acoustic/seismic energy ratio leature,
the different classes of targets are separable
using linear discriminant functions. Nonlinear
discriminant functions offer possibilities for using
reduced feature sets.

4. By utilizing a pairwise voting logic structure, the
classifier circuitry is potentially less prone to
manufacturing tolerance errors and to parameter drift.

5. Using vote reporting in lieu of class reporting, the
voting structure is also suitable for multi-target
clsii.tos Futeroe the likelihood of

intetioal r uintntinaljamming of the sensor
is rducd, nd he serhasgreater opportunity to
exerisejudmen coceringthe tactical situation.

6.Further work is needed to develop the most cost-
effective classifier design. As a foundation for this
work, additional field and/or synthetic data should be
obtained so as to represent more fully the wide
variety of targets and terrain conditions that could be

encountered by an operational system.I



8.2 RECOMMENDATIONS

It is recommended that the following further investigations be

performed:

1. Detail the range capabilities of any newly designed
classifiers, by computing different confusion matrices
as a function of target range.

2. Estimate the expected accuracy and performance of each
classifier on the basis of multi-epoch averaging,
i.e., calculate expected performance versus number
of epochs avera!red. This will evaluate each classifier
on 9 target rui rather than a target partial run basis.

3. Compare the cluster structures of seismic/acoustic
signatures obtained from foreign and domestic vehicles.
If there is a pronounced difference, incorporate the
foreign vehicle data into the data base and retrain/
re-evaluate the classifiers.

4. Compare cluster structures of synthetically-generated
seismic/acoustic signatures (based upon assumed terrain
conditions) with known clusters in the existing field
data records. If cagreement is satisfactory, incorporate
synthetic data for sites not represented by field records
into the data base and retrain/re-evaluate the classifiers.

5. Identify optimal number and type of features; determine
if fewer than 29 features can be used without sacrificing
classifier performance. Investigate trade-off between
numbers of features required and degrees of nonlinearity
of the classifier discriminant functions. (Fewer features
are needed when using nonlinear discriminant functions
within a given classifier architecture.)

6. Investigate the relative merits of "one versus five"
maximum selection, "one versus one" voting, and possible
"one versus five" voting. The last would probably be
competitive in accuracy and consistency with "one versus
one" voting, and would require less circuitry, but these
circuits could be more prone to instability than those
for "one versus one" voting.

7. Investigate use of confidence-weighted voting wherein
a subclassifier producing an output that is numerically
close to the expected output for a given class votes
more strongly for that class than when its output is
far from the expected output.

8. Investigate multi-target classifications using the vote
reporting concept.
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APPENDIX A

WAVEFORM IDENTIFICATION LOG LISTING

A-1



NUN MEROCID CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION
1 469 6 N GRAYLING -0 -0 50 TO
2 469 6 N GRAYLING -O -0 50 70
3 470 6 N GRAYLING -0 -0 50 TO
S471 6 N GRAYLING -C -0 50 705 472 6 N GRAYLING -0 -0. 50 70
6 473 6 N GRAYLING -0 -6 50 70
7 474 6 N GRAYLING -0 -0 50 70
8 495 6 N GEAYLING -0 -u 60 70
9 496 6 N GRAYLING -0 -0 60 70

10 497 6 N GRAYLING -0 -0 60 70
11 498 6 N GRAYLING -0 -O 60 70
12 553 6 N FT.BRAGG -0 -3 30 70 N-S

- . 13 554 6 N FT.BRAGG -0 -0 30 70 N-S
14 535 6 N YUMA -O -0 50 70
15 586 6 N YUMA -0 -0 50 70
16 587 6 N YUMA -0 0 5G 70
17 588 6 N YUMA -0 -0 5073
18 589 6 N YVMA -o "0 50 70C 9. 602 5 Hl YUMA 3 13 70 TO N-S
20 603 5 Hi YUMA 3 10 70 70 N-S
2£ 60' 5 Hi YUHA 3 7 0 7T0 N-S

C 22 605 5 Hl YUMA 3 6 70 70 S-N
23 606 5 Hi YUMA 3 11 70 7• S-N
24 608 5 H3 YUMA 3 8 60 70 S-NC 25 639 5 H3 YUMA 3 12 60 70 S-N
26 610 5 H3 YUMA 3 14 60 70 N-S
27 611 5 H3 YUMA 3 il 60 70 N-S
28 612 5 H3 YUMA 3 -0" 60 70 N-S
29 614 5 H3 YUMA 3 5 60 70 S-N
30 61. 5 H3 YUMA 3 7 60 70 S-NC 3£ 616 5 H3 YUMA 3 11 60 70 S-N
32 617 5 H3 YUMA 3 14 60 70 N-S
33 618 5 H3 YUNA 3 11 60 73 N-S
34 619 5 H3 YUMA 3 8 60 70 N-S
35 62 5 HI YUMA 3 5 60 70 S-N
36 621 5 Hi YUMA 3 8 60 70 S-N
37 622 5 Hi YUMA 3 11 60 70 S-N
38 623 5 Hi YUMA 3 13 60 70 N-S
39 624 5 H1 YUVA 3 10 60 70 N-S
40 625 5 H3 YUMA 3 5 60 70 S-N
41 626 5 H3 YU14of 3 7 6G 70 S-N
42 628 5 H3 YUMA 3 12 64 70 S-N
1,3 629 5 H3 YUMA 3 -u 60 70 N-S
44 630 5 H3 YUMA 3 13 60 70 N-S
45 631 5 H3 YUMA 3 11 60 70 N-S
46 632 5 H3 YUMA 3 7 6C 70 N-S H
4? 633 5 H5 YUt'A 3 15 6C 70 S-N
48 634 5 H5 YUMA 3 12 60 70 S-N
49 635 5 H5 YUIVA 3 10 60 70 S-N
50 637 5 H5 YUMA 3 14 60 ?0 N-S

rI
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INUN MEROCIO CLASS TYPE SITE SPEED STAKE A/S GAI. OIRECTION

51 638 5 H5 YUMA 3 12 60 70 N-S
52 639 5 H5 YUMA 3 9 60 70 N-S
53 669 4 UH-1 FT.BRAGG 80 200 40 70
54 669 4 UH-i FTBRAGG 80 200 4J 70
55 670 4 UH-1 FT*BRAGG 80 200 40 70
56 673 4 UH-I FT*BRAGG 80 200 40 70
57 670 4 UH-i FT*BRAGG 80 200 40 70
58 671 4 UH-I FTeBRAGG 100 200 40 70
59 671 4 CtH-1 FT.BRAGG £00 20ý 40 70
60 671 4 UH-1 FT*BRAGG 100 200 4C 7061 672 4 UH-1 FT.BRAGG 1,n0 200 40 70
62 673 4 UH-1 FT,8RAGG 60 400 40 70
63 673 4 UH-1 FTORAGG 60 400 40 7064 673 4 UH-1 FT.BRAGG 60 4G0 4O 70
65 674 4 UH-i FT.BRAGG 60 400 40 70
66 674 4 UH-1 FT.BRAGG 63 400 40 70
67 675 4 UH-I FTBPAGG 80 400 40 70
68 675 4 UH-i FT*8RAGG 80 400 40 70S69 676 4 UH-i FT.BRAGG 80 400 40 70

.71 676 4 UH-I FTei3RAGG 80 400 40 70
71 677 4 UH-I FT.BRAGG 130 400 40 70S72 677 4 UH-1 FT.BRAGG 100 4us; 40 70
73 678 4 UH-I FT68RAGG 100 400 40 7F074 67"8 4 UH-I FT.BRAGG Ica 460 40 70
75 679 4 UH-I FT, Rt.GG 60 600 40 70
76 679 4 UH-i FT. RAGG 6u 600 '0 70
77 680 4 UH-1 FTBRAG' 60 600" 4C 70
78 680 4 UH-i FTBRAGG 60 600 44 70
79 680 4 UH-1 FTRRAGG 60 600 40 70
86 681 4 UH-1 FTBRAGG 80 600 40 70
81 681 4 UH-i FTBRAGG 80 6io 40 70
82 682 4 UH-i FT.BRAGG 80 600 40 70

S83 682 4 UN-1 FT,9RAGG 80 6ou 40 70
84 683 4 UH-1 FT.OPAGG IGO bGO 40 70
85 683 4 UH-i FT*BRAGG 10 630 40 70
86 684 4 UH-i FTeBRAGG 100 600 40 70
87 684 E, UH-.1 FT.BRAGG 10 6GO 40 71J
88 684 4 UH-1 FT*BRAGG 103 640 4V• 0
89 640 3 TA-4 FT*.RAGG 253 203 4 i ?0S90 641 3 TA-4 FT.aRAGG 250 200 40 70
91 642 3 TA-'. FT*BRAGG 3GC 200 23 70
92 642 3 TA-4. FT BRAGG 300 200 23 70
93 642 3 TA-4 F T.BRAGG" 3GO 26. i3 70
94 643 3 TA-'. FT.BRAGG 33G 2uU 23 70
95 644 3 TA-4 FT*BPAGG 450 200 23 70
96 644 1 TA-. FT.BRAGG 450 241 23 70
97 645 3 TA-4 FT*BPAGG 453 24.0 23 70
98 645 3 rA-4 FT.BRAGG 450 2C03 23 70
99 64E 3 TA-4 FToBRAGG 250 400 23 70

100 646 3 TA-4 FT*BRAGG 250 4ýý 23 70

j A-4
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NUM MEROCIO CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION

101 647 3 TA-4. F'T.BRAGG 250 400 23 70
102 647 3 TA-4 F T.BRAGG 250 400 23 70
103 648 3 TA-'. Ff,,BRAGG 340 400 23 70
104 649 3 TA-' FT.BPAGG 300 400 23 70
105 649 3 TA-4 F T, BRAGG 300 400 23 70
106 650 3 TA-4 FT.BRAGG 450 400 40 70
10? 650 1 TA-'. FT*BRAGG 453 4.ý 4G 70
108 651 3 TA-4 FT.BRAGG 450 400 40 70
109 651 3 TA-4 FT.BRAGG 450 400 40 70
IlL 652 3 OV-IC FT.BRAGG 120 200 44 70
111 652 3 OV-1ý FTBRAGG 123 200 4.0 70
112 653 3 OV-i FT.BRAGG 120 200 40 70
1 £13 653 3 OV-11 FTBRAGG 120 200 40 70
114 654 3 CV-10 FT.BRAGG 150 200 40 70
115 654 3 CV'±C FT.BRAGG 151 200 4• 70
116 655 3 OV-1; FT.a.BAGG 150 2i.J 40 70
117 ()55 3 OV-1C FT.BRAGG 150 200 40 70
118 656 3 CV-1O FT.BRAGG 180 200 40 70
119 657 3 OV-1c. FT.*RAGG 180 2Gi 40 70
120 657 3 OV-iC FT*E.AGG 183 2CO 46 70
121 658 3 OV-tO FTBRAGG 120 .400 40 70
122 658 3 OV-10 FTBRAGG 120 400 40 70
123 659 3 uV-L1 FT*9i'AGG 1230 40 4& 70
124 659 3 FV-1 FTe8RAGG 120 440 40 70

, 125 660 3 OV-10. FT.BRAGG 150 4.00 40 70
126 660 3 OV-,4O FT.SRAGG 150 400 40 70
127 661 3 GV-.IT FT.BRAGG 15 'G00. 4r0 70
128 661 3 iV-I I FT*8RAGG 15 400 4 G 70
129 662 3 OV-bO FT.B FAGG 180 400 40 70130 662 3 OV'-10 FT.BRAGG ±80 4U0 4C 10

131 663 3 0ý-11 FTBRAGG 180 463 40 70
132 663 3 OV-1• FT.aiAGG 180 440 40 70
133 664 3 OV-1O FT.BRAGG 120 600 40 F0

S134 664 3 OV-1C FT.BRAGG 120 6G0 40 70
135 665 3 JV-1i, FT.SRAGG 120 600 40 70
136 665 3 ,V-l1 FT.RRAGG 120 500 4 u 70

, 137 666 3 0Y-10 FT.•RAGG 150 600 40 70
138 6o6 3 OV-1O FT.BRAGG 150 600 40 70
139 667 3 oV-i: FT.BRAGG 150 6u0 46a 70

S140 667 3 OV-1ý FT.BRAGG 150 6C,0 40 70
£41 66e 3 OV-1.• FT.8RAGG 180 600 40 70
142 66e 3 OV-10 FT.BRAGG 180 6GO 4.0 70
143 382 2 M15i YUMA 6 9 5G 70 E-W
144 383 2 M151 YUMA 6 1u 50 70 E-W
145 384 2 M15i YUMA 6 11 50 To 1-j
146 385 2 M151 YUMA 6 10 50 70 W-E
147 386 2 M151 YUMA 16 -0 5C 7w' E-w

"14A 387 2 M151 YUMA 16 -0 5io 70 E-W
• 149 388 2 M151 YUUPA 16 11 50 70 -.

150 389 2 M151 YUMA 16 10 5o 70 W-E
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*NUN MERDCID CLASS TYPE SITE SPEED STAKE A/S GAIN DIR~ECTION

*151 390 2 M1151 YUMA 22 9 50 70 E-W
152 391 2 M1151 YUM4A 22 10 50 70 EM ¶

153 392 2 M1151 YUMA 2? 11 5& 70 W-E± 54. 393 2 11151 YUMA 22 10 5o070 W-4.
155 394 2 M1ij YUMA 31 9 50 T0 E-WS f156 395 2 11151 YUMA 31 11 s0 70 E-N*157 396 2 11151 YUMA .31 11 5070o W-E
158 397 2 11151 VUtPA 31 8 50 ?a W-E
' a159 398 2 12.5 YUMA 6 -0 46 70 W-E160 399 z 12.5 YUMA 6 -0 46 70 W-E161 400 2 T2,5 YUM1A 6 -0 46 70 W-E

*162 401 2 T2.5 YUPA 6 12 460 TO -E
163 402 2 12.5 YUM4A 6 It 4670O W-E164 403 2 T2,5 YUMA 6 10 46 70 WýE
165 404 2 12.5 YUM4A 16 -Ce 40 60 E-W0 166 405 2 12.5 YUMA 16 9 40 60 E"W
W6 406 z 12.5 YUMA 16 11 40 60 Et168 408 2 T2*5 YUMA £6 11 40 60 W-Ea169 439 2 T2.5 YUMA 16 -0 40 60 W-E

.170 411 2 12.5 YUMdA 22 9 40 70 E-W
171 412 2 T2.5 YUMA 22 12 40 70 ENW

a172 413 2 12.5 YUM4A 22 -0 40 70 W-E
173 414 2 T2o5 YUA22 -0 40 70 -
174 415 2 r2o5 YUMA 22 -0 40 F0 N-E.

1 £?: 416 2 T2.5 YUMA 31 4 40 70 E-W176 417 2 72.5 YUMA 31 -0 40 70 E-W
177 418 2 T2., YUMA 31 15' 40 70 1%-E

*178 419 2 T2.5 YUMA .31 12 4070O W-E
L79 420 2 12.5 YUMA 31. 8 40 70 bi-E
18n 422 .2 M1715 YUMA 6 10 50 70 E-W

*181 423 2 M715 YUMA 6 -0 50 70 E-W
182 424 2 117i5 YUMA! 6 12 s0 70 W-E
t.83 425 2 11715 YUt"A 6 11 50 70 k-E0)184 426 2 M1715 YLMA 6 10 so T0 W-E
1135 427 2 M1715 YUMA 16 6 46 70 E-W

a as 428 2 M1115 YUMA 16 8 46 70 E-W18? 429 2 M175 YUM"A 16 10 46 70 E-W
188 430 2 M1715 YUMA 16 l3 46 70 W-E
189 431 2 M175 YUMA 16 11 46 70 E
1.9 432 2 M171.5 YUMA 16 9 46 70 -191 43' 2 M1715 YUMA 22? 7 46 70 E-W£92 4,4 2 11715 YUMA 22 9 470E-W
1.93 435 2 11715 YUMA * 22 11 46 70 -
194 436 2 M715 YUM4A 22 13 46 70 W--E

11.195 437 2 M7115 YUMA 22 11, 46 70 W-E
96 492 M1 YUA22 9 46 70 14-E

97 402 M792 YUMA 6 8. 46 70 E-14197 441 2 11792 YUMA 6 8 46 70 E-W198 '442 2 M792 YUPA 6 90 4t6?0 E-W
P.00 a 4'.3 2 M1792 YUMA 6 11 46 70 14-E
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NUN MEROCID CLASS TYPE SITE SPEEO STAKE A/S GAIN DIRECTION

201 444 2 11792 YUMA 6 10 46 70 1,-E

202 445 2 H792 YUMA 6 9 4.6 70 W-E
203 446 2 M792 YUMA lb 7 46 70 E-w

* 204 447 2 M792 YUVA 16 8 46 70 E-W

205 4,48 2 M792 YUMA .16 9 46 70 E-N
206 449 2 M792 YUMA 16 10 46 70 E-N

* 207 ,,50 2 4792 YUMA 16 13 46 70 W-E
208 451 2 M792 YUMA 16 11 46 70 w-E

209 452 2 M792 YUMA 16 6 46 70 E-1

.p 210 453 2 M792 YUMA 16 8 46 70 E-I

211 454 2 14792 YUNA 16 9 46 70 . -H

S 212 455 2 M4792, YUMA 16 10 46 70 E-N
a. 213 456 2 M792 YUMA 22 6 40 70 E-W

214 457 2 M792 YUMA 22 a 40 70 E-I
215 459 2 M792 YUNA 22 11 40 70 E-U

U 216 463 2 M792 YUMA 22 13 40 70 w-F.
217 461 2 M792 YUNA 22 11 40 70 W-.

218 462 2 M192 YUMA 22 9 40 70 W-E

219 463 2 M792 YUMA 31 5 40 70 i.-W
220 4.64 2 1792 YUMA 31 8 40 70 F-W

221 465 2; M792 YUMA 31 11 .40 70 E-H

, 222 466 2 M792 YUMA 31 14 40 70 w-E

223 467 2 14792 YUMA 31 12 40 70 W-E.

224 468 2 14792 YUMA 31 9 40 70 w-E

* 225 475 2 M151 GRAYLING 6 -0 50 70 S-N

226 476 2 1151 GRAYLING 6 -0 50 70 S-N
227 477 2 14151 GRAfLING 6 -0" 5G, 70 S-N

* 228 478 2 M151 GRAYLING 6 -0 50 70 N-S

229 47S 2 M15l GRAYLING 6 -0 50 70 N-S

230 48Z 2 M151 GRAYLING 16 -0 50 70 S-N

231 481 2 M151 GRAYLINC 16 -0 50 70 N-S
232 482 2 1151 GRAYLING 16 -0 56 70 N-S

233 483 2 M151 GRAYLING 16 -3 54 70 N-S

* 234 484. 2 M151 GRAYLING 22 -0 60 70 S-N
235 485 2 M4151 GRAYLING 22 -O 60 70 S-N

236 486 2 1151 GRAYLING 22 -0 60 70 S N

S237 48? 2 M151 GRAYLING 22 -0 60 TO N-S

238 458 2 M151 GRAYLING 22 -0 60 70 N-S

239 489 2 1151 GRAYLING 31 a 60 70 S-N

* 240 490 2 M151 GRAYLING 31 2 60 70 S-N
241 491 2 1151 GRAYLING 31 5 60 70 S-N

242 492 2 M151 GRAYLING 31 8 60 70 N-S

. 243 493 2 4151 GRAYLING 31 5 60 70 N-S

244 494 2 1151 GPAYLING 31 2 60 70 N-S

245 499 2 T2.5 GRAYLING 6 1 40 TO S-N

- 24C 5)0 2 T2.5 GRAYLING 6 2 40 70 S-N

247 501 2 T2.5 GRAYLING 6 3 40 70 S-N

248 502 2 T2.5 GRAYLZN( o 5 40 70 N-S

- 249 503 2 T2.5 GRAYLING 6 4 40 70 N-S

"250 504 2 T2.5 GRATLING 6 3 4(i 70 N-S
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CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION

S251 505 2 T2.5 GRAYLING 16 1 40 TO S-N
252 506 2 12.5 GRAYLING 16 2 40 70 S-N
253 537 2 TZ15 GRAYLING 16 4 4w 70 S-N
254 5j 58 2 T2o5 GPAYLING 16 7 40 70 N-S
255 509 2 T2*5 GRAYLING 16 6 40 70 N-S
256 510 2 T2,5 GRAYLING 16 4 40 10 N-S
257 511 2 T295 GRAYLING 16 2 40 70 N-S258 512 2 T2.5 GRAYLING 22 £ 4070 S-N
259 513 2 T2.5 GRAYLING 22 3 4u 70 S-N
260 514 2 T2.5 GRAYLING 22 5 40 70 S-N

..... 261 515 2 T2.5 GRAYLING 22 7 40 70 N-S

262 516 2 T2.5 GRAYLING 22 4 40 70 N-S
263 517 2 T2,5 GRAYLING 22 2 40 70 N-S
264 51e 2 T2.5 GRAYLING 31 0 40 70 S-N
265 519 2 T2.5 GRAYLING 31 1 40 70 S-N
266 520 2 T2.5 GRAYLING 31 4 40 70 S-N
267 521 2 T2,5 GRAYLING 31 8 40 70 N-S
268 522 2 T2*5 GRAYLING 31 5 40 T0 N-S

S269 523 2 T2.5 GRAYLING 31 2 40 70 N-S
270 52E 2 15.0 GRAYLING 6 1 40 70 S-N
271 527 2 T5.0 GRAYLING a 2 3c 70 S-N
272 528 2 95sC GRAYLING 6 3 30 70 S-N
273 529 2 15.0 GFAYLING 6 6 30 70 N-S
214 530 2 T15. GRAYLING 6 4 S4 70 N-S
275 531 2 T50,• GPAYLING 6 3 30 ?a N-S
2?o 532 2 T56" GRAYLING 16 1. 30 70 S-N
27? 534 2 T150 GRAYLING 16 4 30 70 S-N
278 535 2 T150 GRAYLING 16 8 30 70 N-S
279 536 2 TS1. GRAYLING 16 6 3c 70 N-S,
280 537 2 T5.0 GRAYLING 16 5 30 70 N-S
281 538 2. T5.0 GPAYLING 16 3 30 70 N-S
282 539 2 T15. GRAYLING 22 1 30 70 S-N N
283 540 2 T5s0 GRAYLING 22 3 3C 70 S-N
284 541 2 T5.0 GRAYLING 22 5 30 70 S-N
285 542 2 T5.0 GRAYLING 22 8 30 70 N-S286 543 2 T5.0 GRAYLINC 22 5 30 70 N-S
287 544 2 T5*C GRAYLING 22 3 30 70 N-S
288 545 2 T5,6 GmAYLING 31 4 30 70 S-N
289 54c 2 T15. GRAYLING 31 2 30 70 S-N
290 547 2 T5*0 GRAYLING 31 5 30 70 S-N
291 548 2 T15. GRAYLING 31 a 30 70 S-N
292 549 2 T150 GRAYLING. 31 -u 3u 70 N-S
293 550 2 TS1. GRAYLING 31 6 so 70 N-S
294 551 2 1 5T.0 GPAYLING 31 -0 30 "t0 N-S
295 555 2 Mi5i FTBRAGG 6 11 50 70 S-N
296 55b 2 Mj51 FT*BRAGG 6 13 50 70 S-N
297 557 2 M151 FToBRAGG 6 9 50 71 S-N
298 558 2 M151 FT.BRAGG 16 -0 50 70 S-N
299 559 2 M151 FT*BRAGG 16 10 5w 70 S-N
300 560 2 M151 FT.BRAGG 16 11 53 70 N-S
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NUM MEROCID CLASS TYPE SITZ SPZED STAKE A/S GAIN DIRECTION

301 561 2 M1451 FT.BRAGG 16 9 5G 70 N-S
302 562 2 1151 FTBRAGG 22 8 50 70 S-N
303 563 2 M15 1 FT.ORAGG 22 10 50 70 S-N
304 564 2 1151 FTBRAGG 22 12 50 70 S-N
305 565 2 1151 FT.BRAGG 22 13. 50 70 N-S
306 566 2 1151 FT,6.RAGG 22 11 50 70 N-S
307 567 2 M151 FT.BRAGG 22 9 Fo 70 N-S
308 568 2 M151 FTBRAGG 31 8 50 70 S-N. 309 569 2 115± FT.BRAGG 31 12 50 70 S-N
310 570 2 M151 FT*8RAGG 31 13 50 70 N-S
311 571 2 M151 4 TsBRAGG 31 11 50 70 N-S
312 572 2 M151 F',BRAGG 31 .8 50 70 N-S
313 573 2 T2,5 FT.*RAGG 6 8 50 70 S-N
314 574 2 T 2 , FT.BRAGG 6 10 50 70 S-N
315 575 2 T2,5 FT*BRAGG 6 -o 50 70 S-N
316 576 2 T2.5 FT.BRAGG 6 12 50 70 N-S
317 ...577 2 T2.5 FToBRAGG 6 11 50 70 N-S318 578 2 T2.5 FTPBRAGG 6 9 50 70 N-S
319.. 579 2 12.5 FT*BRAGG 16 8 50 70 S-N
320 580 2 T2.5 FTBRAGG 16 9 50 70 S-N
321 581 2 T2.5 FTO0RAGG 16 11 50 73 S-N
322 583 2 T2.5 FT.BRAGG 16 11 50 70 N-S
323 584 2 T?.5 FT.BRAGG 16 9 '50 70 N-S
324 591 2 T2.5 FT.BRAGG 22 8 50 70 S-N

1" 325 592 2 T2.5 FT.BRAGG 22 10 50 70 S-N
326 593 2 T2.5 "FToBRAGG 22 11 50 70 S-N327 594 2 T2.5 FT.eRAGG 22 13 50 70 N-S

• 328 595 2 T2.5 FT.BPAGG 22 11 - 50 70 N-S
329 596 2 T2.5 FT.BRAGG 22 9 50 70 N-S
330 597 2 T2.5 FT.BRAGG 31 9 50 70 S-N

4, 331 598 2 T2.5 FT&BRAGG 31. 12 50 70 S-N
332 60J 2 T2.5 FT.BRGG 32 11 50 70 N-S
333 601 2 T2.5 FT.BRAGG 31 9 50 70 N-S
334 3 1 M107 YUMA 16 1 3c 70 E-w
335 4 1 M14.07 YU F.1 16 5 30 70 E-W
336 5 1 M107 YUMA 16 8 30 70 E-W
33? 6 1 M107 YUMA 16 12 30 70 E-N
338 7 1 Hin7 YUMA 16 19 30 70 E-w
339 8 1 14107 YUM.A 16 15 30 70 W-E
340 9 1 4107 YUMA 16 13 3070 ?a-E H
341 10 1 4107 YUMA 16 11 30 70 W-E
342 11 1 11G? YUMA 16 7 30 70 W-E

C 343 13 1 M110 YUMA 16 5 30 70 E-W
344 14 1 M11(7 YUFA , 16 8 30 70 E-W
345 15 1 1107 YLIMA 16 10 30 70 E-W
346 1E 1 11G7 YUMA 16 12 30 70 E- W
347 17 1 1107 YUMA 16 1' 40 70 E-W
348 19 1 Mi4? YUMA 16 13 30 70 w-E
349 20 1 M1O7 YUMA 16 11 30 70 W-E
"350 21 1 1107 YUMA 16 9 30 7? k-E
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"NUM MERDCID CLASS TYPE SITE SPEED STAKE A/S GAIN UIRECTION

351 22 1 11107 YUMA 16 7 30 70 W-E

S52 23 1 M107 YUMA 22 6 30 70 E-W

353 24 1 MiI7 YUMA 22 8 30 70 E-W

354 25 1 MIO? YUM4A 22 10 30 70 E-W

355 26 1 MIH7 YUMA 22 11 30 70 E-W

356 27 1 1M107 YUMA 22 -• 30 70 E-w

357 28 1 Hih7 TUFA 22 15 30 70 i-E

358 29 1 1Or YUMA 22 ±0 30 70 W-E

359 30 1 M10? YUHA 22 8 30 70 b-E

360 31 1 MWD? YUMA 22 6 30 70 w-E

361 32 1 1107 YUP.A 22 10 30 70 E-W

362 33 1 1M107 YUMIA 22 11 30 70 E-N

363 34 1 M1107 YUMA 22 13 30 70 E-W

364 35 1 1I07 YUM4A 22 15 30 70 W-E

365 36 1 M107 V UOA 22 13 30 70 w-E

366 37 1 M1107 YUPA 22 1l 30 70 h-E -

367 38 1 M107 YUMA 22 8 30 70 W-E

368 3c I MIG? YUMA 28 7 30 70 E-W

369 40 1 14107 YUAA 28 9 30 70 E-W

370. 41 1 MIG? YUPA 28 12 30 70 E-W

371 42 1 1D107 YUHA 28 .14 3C 73 W-E

372 43 1 Mit., YUMA 28 12 -30 79 0-E

373 44'. 1 MIC7 YUMA 28 8 3a 70 W-E

374 45 1. MItG YUMA 28 6 30 70 E-W

375 46 1 1107 -YUMA 28 9 30 70 E-N

376 47 1 MHi7 YUMA 28 13 30 70 E-1

377 48 1 M107 YUMA 28 15. 30 70 W-E

378 4q I 1iC7 YUMA 28 13 30 70 W-E

379 50 1 M107 YUMA 28 11 30 70 W-.

380 51 1 M10? YUMA 28 8 30 70 %-E.

381 52 1 M160 YUMA 6 15 24 70 W-E

382 53 1 160 YU1UA 6 14 20 70 W-E

383 54 1 M6J YUMA 6 12 20 70 W-E

384 55 1 M60 YUMA 6 11 20 70 N-E

385 57 1 M6C YUMA 6 9 20 70 - .-E

386 58 1 140 YUIFA 6 8 20 70 W-E

"387 59 1 Meo YUFA 6 7 2C 70 h-E

388 60 1 160 YUMA 6 5 2C 70 E-W

389 61 1 1460 YUMA 6 7 20 70 E-W

,, 390 62 1 160 YUMA 6 9 20 70 E-l

391 63 1 M6i YUP'A 6 10 20 70 E-N

392 64 1 M60 YLMA 6 I1 20 70 E-W

393 65 1 M60 YUMA 6 12 20 70 E-N

394 66 1 H60 YUMA 6 15 20 70 W-E

395 6? 1 1M60 YUPA 6 14 20 70 W-E

396 68 1 H60 YUMA 6 12 2070 W-E

397 69 1 M60 YUMA 6 11 20 70 h-E

398 7i0 1 1460 YUMA 6 9 26 70 W-E

399 T1 1 M6C YUMA 6 8 2070 W-.

400 72 1 1460 YUPA 16 6 16 70 E-w
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I NUM HERDCID CLASS TYPE SITE SPEEO STAKE A/S GAIN DIRECTION

401 73 1 460 YUMA 16 7 16 70 E-W
402 74 1 #60 YUM4A 16 9 1.5 70 E-.
403 75 1 M60 YUMA 16 11 16 70 E-w

o 404 76 1 MHc YUMA 16 14 16 70 E- I
405. 77 1 M60 YUA.... 16 ... 1 £6 L 70 4-E
406 78 1 M60 YUMA 16 11 16 70 W-E
407 O9 1 M60 YUMA ±6 9 16 70 W-F.
408 so 1 M60 YUPA 16 6 16 70 W-E
409 81 1 M60 YUMA 16 3 16 70 W-E
410 •2 1 M6G YUMA 16 4 16 70 E-,
411 .83 1 M60 YUMA . .. .16 7 16 70 E-.
416 88 1 #60 YUHIA 16 1 16 70 E-W
412 85 1 M60 YUMA 16 8l 16 70 E-W

413 86 1. M60 YUM4A 16 14 £6 70 E-W415 87 1 M60 YUMA 16 15 16 760 W-E
416 8a I M60 YUPA 16 12 16 70 W-E

417 89 1 M#eO YUMA 16 9 16 70 W-E
418 90 1 M60 YUMA 16 6 16 70 •-

419 91 1 M60 YUMA 22 5 16 70 E-W
420 92 1 #6G YUMA 22 7 16 70 E-W
421 93 1 #46O YLMIA 22 9 16 70 E-W
4, 422 .94 1 M64, YUMA 22 1£2 6 70 E-14
423 q51 M4O YUMA 22 15 16 70 W
424 96 1 H6c YUMA 22 18 16 70 W-E

425 97 1 M66 •YUPA 22 14 16 70 W-.

426 98 1 #60 YUMA 22 11 16 70 W-E

427 99 1 M#6C YUMA 22 8" 16 70 N-E
428 100 I M60 YUMA 31 4 16 70 E-w
429 101 I M60 YUPA 31 8 16 70 E-W
430 £02 1 #60 YVUMA 31 13 16 70 E-;W
4M31 103 ± #46 YUMA 31 16 16 70
432 104 1 M6C YUMA 31 17 16 70 -E
433 i0E 1 M60 YUPA 3£ l2 lb 70 WiE

S434 106 1 M460 YUHA 31 11 16 70 W-E
435 107 1 M60 YUMA 31 8 16 70 W-E

436 108 1 #6c YUMA 31 4 16 70 W-E
4 437 109 1 M6C YUMA 31 4 16 70 E-W
438 1.i £ Me:e YUWA 31 8 16 to E-0
439 lit 1 460 YUMA 31 9 16 70 E-W

S440 112 1 #46c YUMA 31 13 16 70 E-W
441 113 1 M6C YUMA 31 lb 16 70 E-W

442 114 1 #60 VUPA 31 1b 16 70 W-E

. 443 £15 1 #60 YUMA , 31 12 16 70 W-E
444 116 1 M60 YUMA 31 I0 16 70 W-E
445 117 1 M60 YUMA 31 7 16 70 W-E

*p 446 £18 1 M113 YUMA 6 4 30 70 E-W
447 119 1 M113 YUMA 6 -O 30 70 E-W
448 120 1 M113 YUMA 6 - 30 70 E-W

* 449 121 1 M113 YUMA 6 8 30 70 E-.
450 124 1 4113 VUPA 6 -0 30 70 E-W

t.
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NUM MEROCID CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION

451 1E•2 M113 YUMA 6 13 3c 70 h-i
452 127 1 M113 YUHA 6 1± 30 70 W-E6.
453 128 1 M113 YUMA 6 ±0 30 70 W-E_

"' 454 12.9 1 M113 YUMA 6 9 30 70 W-E
455 133 1 M113 YUMA 6 7 3 v 70 E-W456 131 1 M113 YUMA 6 8 30 70 £-W
4 57 132 1 M113 YUMA 6 9 30 70 E-Wfri
458 133 1 MP13 YUMA 6 11 30 70 E-W
459 134 1 M#13 YUNA 6 12 30 70 E-W
460 136 1 M113 YUMA 6 12 30 70 W-E
461 137 1 M113 YUMA 6 11 30 70 N-E
462 138 1 M113 YUMA 6 Lu 30 70 W-E6.
463 139 1 M113 YUMA 6 9 30 70 W-E I464 14O 1 #113 YUMA 6 -0 30 70 W-E
465 142 1 Ml13 YUMA 16 8 26 70 E-W1

S466 143 1 M113 YUMA 16 9 26 70 E-W .
467 144. 1 M113 YUPA 16 11 26 70 E-W1
468 145 1 M113 YUMA 16 13 26 70 W-E
469 'L'46 £ M#1±3 YUMA 16 11 26 70 h-E
470 147 1 M113 YUMA 16 9 26 70 W-.
471 148 1 Ml13 YUMA 16 8 26 7u W-E
"472 149 1 Ml1J YUMA 16 1 26 70 E-W
473 150 1 .113 YUMA 16 8 26 70 F- W
474 151 1 M.113 YUMA 16 10 26 70 E-W1
475 152 1 M1113 YUMA 16 12 26 70 E-14
476 153 1 M113 YUFA 16 13 26 70 E-W
477 154 1 M113 YUMA 16 14. 26 70 W-E I
478 155 1 M113 YUMA 16 12 26 70 W1-6E479 156 1 M113 YUMA 16 11 26 70 W-E6.
480 157 1 H#13 YUMA 16 9 26 70 W-E6.
4 481 158 M #113 YUMA 16 7 26 70 W-6'
482 i5€ i 1113 YUMA 22 6 26 70 E-W

S483 160 1 M113 YUMA 22 8 26 70 E-W1
484 162 1 M113 YUPMA 22 12 26 70 E-w
485 £6' 1 M113 YUMA 22 15 26 70 h-,E
486 165 1 M113 YUMA 22 13 2E 70 W-E
487 io6 1 M113 YUMA 22 11 26 70 W-E
488 167 1 M113 YUMA 22 9 26 70 w-E
489 1b6e I -113 YUMA 22 b 26 70 W-,E
490 16S 1 H113 YUMA 22 4 26 70 E-HW
491 17u ± M113 YUMA 22 7 26 70 E-1W
492 171 1 M113 YUMA 22 9 26 70 E-W1
493 17?2 1 M113 YUPA 22 11 26 70 E-WI
494 173 1 M113 YUMA 22 14 26 70 E-14
495 174 1 M113 YUMA 22 15 26 70 w-E
496 1.75 1 M113 YUMA 22 13 26 70 W-E
497 176 1 M113 YUMA 22 I1 26 70 w-E
498 177 1 M113 YUMWA 22 8 26 70 W-E6.
499 17• 1 M113 YUMA 22 5 26 70 h-E
500 179 1 M113 YUMA 31 5 20 70 E-W
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I-] NUM MEROcIO CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION

501 180 1 M113 YUMA 31 8 20 70 E-W502 181 1 M113 YUMA 3L 12 20 70 E-W
503 182 1 M113 YUMA 31 16 20 70 W-E
504 183 1 M113 YUMA 31 12 20 70 W-.E
505 184 1 M113 YUMA *.. 31 ..... 1 20 70 W-E
50e 185 1 1113 YUMA 31 9 20 70 W-E
507 186 1 14±3 YUMA 31 6 20 TO E-W
508 187 1 M113 YUMA 31 9 20 70 E-W
509 188 1 M113 YUMA 31 12 20 70 E-W
510 189 1 14113 YUM'A 31 15 201 0 E-W
511 190 1 M113 YUMA 31 18 .. 21 70 W .WE

512 191 1 M113 YUMA 31 15 20 To W-E
513. 192 1 M113 YUMA 31 12 20 70 W-E
514 193 1 M113 YUMA 31 6 2 T70 W-E .
515 194 1 M113 YUM<A 31 5 20 70 W-E
516 195 1 M48 YUMA 6 5 26 70 E-W
517 1c6 1 M48 YUMA 6 6 26 70 E-W
518 197 1 M48 YUMA 6 8 26 70 i-W
519 198 1 M48 YUMVA 6 9 26 70 E-W
52.0 199 1 M48 YU10A 6 1i 26 70 E-W
521 230 1 M48 YUMA 6 13 26 70 E-W
522 201 1 M48 YUMA 6 14 26 70 W-E
523 2J2 1 M48 YUMA 6 13 26 70 W-E
524 203 1 M48 YUMA 6 11 26 70 W-E
.525 23 1 1448 YUMA 6 9 26 70 W-E
526 2 ,5 1 M148 YUMA 6 8 26 70 W-E
527 20E £ 1448 YUMA 6 8 26 70 E-w
528 207 1 M48 YUMA 6 9 26 70 EW-
529 238 1 M48 YUHA 6 10 26 TO E-W
530 209 1 M48 YUMA 6 11 26 70 E-W
531 210 M 448 YUMA 6 12 26 70 E-W
532 211 1 M448 YU4A 6 13 26 70 W-c
533 212 1 M148 YUHA 6 12 26 70 W-E
534 213 1 M48 YUMA 6 11 i6 70 W-E
535 214 1 M48 YUMA 6 10 26 73 W-E
536 215 1 M48 YUMA 6 8 26 70 W-.
537 216 1 M48 YUMA 16 8 20 70 E-W
538 217 1 M448 YUMA 16 9 20 70 E-W
539 218 1 M48 YUMA 16 11 20 70 E-W
540 2•. i.4 M1.8 YUlFA 16 13 20 70 E-W
541 220 1 M48 YUMA 16 15 20 70 W-E
542 221 1 M48 YUMA 16 13 20 70 h-E
543 222 1 M48 YUMA 16 11 20 70 w-E
544 223 1 148 YUMA 16 8 Z0 70 W-E
545 224 1 M48 YUA 16 6 20 70 W-E
546 225 1 M48 YUMA 16 6 20 70 c-W
547 226 1 M448 YUMA 16 8 20 70 E-W
548 227 1 M148 YUPA 16 9 20 70 E-wK 549 228 1 M48 YUMA 16 11 20 70 E-W

' 550 229 1 M48 YUMA 16 13 20 70 F-W
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NUM M-RDCID CLASS TYPE SITE SPEED STAKE A/S GAIN DIRECTION

551 230 1 N48 YUHA 16 15 2G TO W-E
552 231 1 M48 YUMA 16 14 20 70 W-E
553 232 1 918 YUPA 16 11 20 70 %-E
554 233 1 M48 YUMA 16 9 20 70 W-E
555 234 1 M48 fUMA 16 6 20 70 W-E
556 235 1 M,48 YUMA 22 5 20 70 E-W
"557 236 1 M48 YUPA 22 7 20 70 E-N
558 237 1 M48 YUMA 22 9 20 70 E-W
559 238 1 M48 YUMA 22 11 20 70 E-WS560; 239 1 M48 YUMA 22 13 20 70 E-W

561 240 1 M148 YUMA 22 15 20 7U W-r:
562 241 1 M48 YUMA 22 13 20 TO W-E
563 242 1 M48 YUMA 22 11 20 70 W-E
564 243 1 M48 YUPA 22 8 20 70 W-E
565 245 1 M48 YUMA 22 8 20 70 E-W
566 24r6 ± M48 YUMA 22 9 2C 70 E-W
56? 247 1 M48 YUMA 22 6 20 70 E-W

568 2 4 1 M48 YUMA 22 8 2& 70 E-W
a" 569 249 1 M48 YUMA 22 9 20 70 E-W

573 253 1 M48 YUMA 22 12 20 70 E-W
571 251 1 M48 YUMA 22 14 20 70 E-W
"572 252 1 M48 YUMA 31 6 16 73 E-W
573 253 1 M948 YUMA 31 12 16 70 E-W
574 254 1 M48 YUHA 31 17 16 70 W-E
575 255 1 M48 YUMA 31 12 16 70 W-E
576 257 1 M48 YUMA 31 8 16 70 W-E
577 271 1 M48 GRAYLING 6 -"" 20 40 S-N
578 212 1 M48 GRAYLING 6 1 20 40 S-N
579 273 1 M48 GRAYLING 6 2 20 40 S-N
580 274 .1 M48 GFAYLING 6 3 20 40 S-N
581 275 1 M48 GRAYLING 6 9 20 40 S-N
582 276 1 M48 GRAYLING 6 -0 20 40 N-S
583 277 1 M48 GRAYLING 6 6 20 40 N-S
584 27e 1 M48 GRAYLING 6 5 20 40 N-S
585 27S 1 M48 GRAYLING 6 1 2& 40 N-S
586 280 1 M48 GRAYLING 6 1 40 43 N-S
587 281 1 M48 GRAYLING 16 2 20 40 S-N
588 282 1 M4ý GRAYLING 16 5 20 40 S-N
589 283 1 M48 GRAYLING 16 7 20 40 S-N
590 284 1 M48 GRAYLING 16 8 2& 40 N-S
591 285 1 M96 GRAYLING 16 7 20 40 N-S
592 286 1 M94 GRAYLIN G 16 5 20 40 N-S
593 287 1 M48 GRAYLING 16 2 20 40 N-S
594 288 1 M48 GkAYLING 20 1 20 40 S-N
595 289 1 M48 GRAYLING 20 3 20 40 S-N
596 29u 1 M48 GRAYLING 20 5 20 40 S-N
597 291 1 M48 GRAYLING 23 8 20 40 S-N
598 292 1 M48 GRAYLING 20 8 2C 40 N-S
599 293 1 M98 GRAYLING 20 6 20 40 N-S
600 294 1 M48 GRAYLING 20 4 20 40 N-S
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NUM MEROCIO CLASS TVPE SITE SPEED STAKE A/S GAIN UIRECTION

601 295 1 M48 GRAYLING 20 1 20 40 N-S
602 296 1 M113 GRAYLING 6 0 36 70 S-N
603 297 1 M113 GRAYLING 6 1 3E 70 S-N
604 3 u0 1 'M113 GRAYLING 6 5 36 70 S-N
605 302 1 M113 GRAYLING 6 7 36 70 N-S
606 303 1 M113 GRAYLING 6 6 36 70 N-S
60? 304 1 M113 GRAYLING 6 5 3e 70 N-S
608 305 1 '113 GRAYLING 6 4 36 TO N-S
609 307 1 Ml13 GRAYLING 6 -0 36 70 N-S
610 309 1 M113 GRAYLING 16 7 36 70 N-S
611 310 1 M113 GRAYLING 16 5 36 70 N-S
612 311 1 M113 GRAYLING 16 2 36 70 N-S
613 312 1 M113 GRAYLING 16 1 3t 70 S-N
b14 313 1 M113 GRAYLING 16 2 36 70 S-N I
615 314 1 1113 GRAYLING 16 4 36 70 S-N

%lo 616 315 1 M113 GRAYLING 16 8 3, 70 N-S
617 31E £ 113 GRAYLING 16 6 36 7C N-S
618 317 1 M113 GRAYLING 16 4 3E 70 N-S
619 318 1 Ml13 GRAYLING 16 2 36 70 N-S
620 319 1 M113 GRAYLING 22 8 36 70 N-S
621 320 1 '113 GRAYLING 22 5 36 70 N-S
622 321 1 M113 GRAYLING '.2 1 .36 70 t,'-S
623 322 1 M113 GFA','LING 22 u 36 70 S-N
624 324 1 M113 GRAYLING 22 6 36 70 S-N
625 325 1 M113 GRAYLINC 28 a 3e 70 S-N
626 326 1 M113 GRAYLING 28 2 36 70 S-N
627 327 1 M113 GRAYLING 28 5 36 70 S-N
628 32E 1 'M113 GRAYLING 28 9" 36 70 S-N
629 329 1 M113 GRAYLING 28 8 36 70 N-S I
630 330 1 M.113 GRAYLING 28 6 36 70 N-S
631 331 1 M113 GRAYLING 28 2 36 70 N-S
632 332 1 M113 FT.BRAGG 6 12 40 70 N-S
633 334 1 M113 FTBRAGG 6 10 40 70 N-S
634 335 1 Ml13 FT.o0RAGG 6 8 40 70 N-S
635 337 1 M113 FTo.RAGG 16 11 40 70 S-N
636 33f 1 M113 FT.oRAGG 16 13 40 70 S-N
637 339 1 '113 FT&BRAGG 16 14 40 70 N-S
638 340 1 M113 FT.BRAGG 16 12 40 70 N-S
639 341 1 M113 FTR.RAGG 16 8 40 70 N-S
640 342 1 M1113 FT.BRAGG 16 6 40 70 N-S
641 343 1 M113 FT*BRAGG 22 6 40 70 S-N
642 344 1 Ml'1 FT.qRAGG 22 8 4t 70 S-N
643 345 1 M113 FT.*RAGG 22 10 40 70 S-N
644 346 1 113 FT*BRAGG 22 11 40 70 S-N
645 347 1 Ml13 FT*BRAGG 22 -0 40 70 S-N
646 348 1 M113 FTBRAGG 22 14 40 70 N-S
64? 349 1 M113 F T.8RAGG 22 12 4k 70 N-S
648 351 1 MIlS FT.3RAGG 22 8 40 70 N-S
649 352 1 Ml13 FTBRAGG 25 5 40 70 S-N
• a 353 1 M113 FTBRAGG 25 8 4C 70 S-N
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NUM MEROCIO CLASS TYPE SITE SPEED STAKE. A/S GAIN U3IRECTION

651 354 1 113 FT*BRAGG 25 11 40 70 S-N
652 355 1 M113 FT*BRAGG 25 14 40 70 S-N
653 356 1 M113 FT*E.AGG 25 14 4C 70 N-S
"654 357 1 M113 FT*BRAGG 25 13 40 70 N-S
655 35f 1 M1113 FT.BRAGG 25 11 40 70 N-S
656 35c 1 1 l13 FTBRAGG 25 9 40 70 N-S
657 360 1 M113 FTBRAGG 25 7 40 70 N-S
658 364 1 M48 FT.8RAGG 6 14 30 70 N-S
659 366 1 M48 FT*8RAGG 6 11 30 70 N-S
"660 36e 1 M48 FTBRAGG 16 - a 30 70 S-N
661 369 1 148 FT,8RAGG 16 15 30 70 N-S
662 370 1 M48 FT.*RAGG 16 12 30 70 N-S

S663 371 1 M48 FTBRAGG 16 11 30 70 N-S
664 372 1 148 FTBRAGG 16 9 30 70 N-S
665 373 1 M48 FT*8RAGG 16 7 30 70 N-S
666 374 1 M148 FT,3RAGG 20 12 30 70 N-S
667 375 1 148 FToBPAGG 20 9 30 70 N-S
668 376 1 M48 FTBRAGG 20 7 30 70 N-S
669 377 1 M48 FT*BRAGG 20 5 30 70 S-N
670 378 1 1148 FT,,RAGG 20 7 30 70 S-N
671 380 1 148 FTeBRAGG 20 12 30 70 S-N

044
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APPENDIX B

DIAGRAMS OF TEST SITES

(Provided by USAMERDC)
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APPENDIX C

SYLVANIA FEATURE EXTRACTOR DATA

1. STC and SATO Flow Chart Showing
Transfer Functions

2. Difference Equations Used in
Sylvania Feature Extractors

3. FORTRAN Program Feature Extractor
Samples
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DIFFERENCE EQUATIONS USED IN SYLVANIA FEATURE EXTRACTORS

() 1-Pole LPF

y, Ax 1 +By,_,

where A =2wrrfAt/(1 + 2wfAt)

B =1/(1 + 2rrfAt)

= Present Input Value
= rsn utu au

=i Paeset Output Value

f =Cutoff Frequency

At =Sampling Interval

(2) 2-Pole LPF

=1/(1+Ts) 
2  =i AX 1 + By1._, Cyi1 2x

where A = (2rrfAt) /[(2irfAt) 2 + 2(27rfAt) + 1]
2

B 22lft +2/(2rrfAt) + 2(2rrfAt) +1]

r 2
C =1/[(27TfAt) + 2(2ivfAt) + 1]

(3) 3-Pole LPF
2 2

y/x =1/(l+Ts)(1+TS+T s)

-~y 1 Ax1 + By 1 _1 - Cyi1 2 + Dy 1 1j

where A =2(2rrfAt) 3/DEN
2

B = 2(2fffAt) + 4(2nrfAt) + 31/DEN

C =[2(2nrfAt) + 31/DEN

D =1/DEN

3 2 2ft+
DEN (27ifAt) + 2(2rrfAt) + 2(rft+1

(4) 1-Pole HPF

y/x =Ts/(1+Ts)-i y1 2- A(x 1 -x 1 1 +y 1 1 ,)

where A 1/(27rTfAt + 1)
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(a)

(b)

III 4..... Il I - I. I L

j II
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Sapl OtutFrmth Slana etur EtatorFRRNporm

(a) ___20__Hz__sinusoidal___ input ~
(b Ful wav retfe output-~~-4-" ~$-4

Samplie Outpu Fromlthe Syvnf eature EtatrFRRNporm
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Won~f c.2'vvani'n Ohio ~ Printim in U S A

(a) .

7.

I: I. ! J-

..................... ......... ..... ...

JiL .L. .. .........

(d)- jIiiT.iIi 41j.L
oi- '12L i ..f. jt.

.''~ E .lEE ....

Sample Output From the Sylvania Feature Extractor FORTRAN program:,

(a) 30 Hz sinusoidal input
(b) Limiter Output
(c) 240 Hz HPF output
(d) Half wave rectifier output
(e) Seismic frequency feature
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J.w .. ... .

(e)

- t--4-----4-i

(f

Sample Output From the. Sylvania Feature Extractor FORTRAN4 Program

(a) Sinusoidal test function with increasing frequency
(c) Low band amplifier output
(d) Full wave rectifier output
(e) 10 Hz LPF output
(f) Low band envelope featureC- 8 i



APPENDIX D

ADAPTIVE LEARNING NETWORK NONLINEAR DISCRIMINANT FUNCTION
STRUCTURES, EIGENVECTOR WEIGHTS, AND TABLE OF ERRORS AND
CLASS 1 AND CLASS 2 ERROR HISTOGRAMS WITH RESPECT TO RANGE

FOR NONLINEAR CLASSIFIER G
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TABLE D.2

ERRORS MADE IN NONLINEAR CLASSIFIER G FOR THE SIX TARGET CLASSES

NUM MEROCID CLASS TYPE SITE SPEED RANGE A/S GAIN DIRECTION SET -

(1 498 6 N GRAYLING -o -0 607 TO
2 553 6 N FTsRFAGG -O - 30 70 N-S E

3 554 6 N FT.(RPAGG -0 -0 30 70 N-S E
~4 586 6 N YUMA -0 -0 so To E
5 603 5 MI1 YU14A 3 20 -~70 70 N-S__ E - -

6' 625~-__5H1_-_ YUMA .... 3 See' -60 g7'- - S-N -S
7 679 4 IJH-1 FT.1RPAGG 60 -600 40 70 E
a 679 4 UH-I FT.BFAGG 60 600 40 70 E
9 640 3 TA-f. FTs9PAGG 250 200. 407 TO

10 642 3 TA-'. FTnFWAGG 300 200 23 70o'
11. 642 3 TA-'. FT*RFAGG 300 200 23 70 E
i2_ 644--- 3 TA-to 1FT9FWAGG 450 200.. 237.0
13 645 3 TA-'. FT99PAGG 450 200 23 70 E
14 650 3 TA-'. FTo9FAGG 450 400 40 70 E
15 655 3 OV-10 FT.HFAGG 150 200 _ 40 70 C.....-

± 387- 2- M4151 YUMA 16- - 50 70 E-Y E
17 389 2 14151 YUMA ___16 20 s0 70 W-E E
1$ 392"--- '---2.1451 VYWIK'__ 22 100 50 7G....HE
19 403 2 T2*5 YUMA 6 20 46 70 W-E E
20 411 2 T2.5 YUMA . 22 I00 40 70 E-W E_
21 412 2 T2o5 YUMA 22 -200 40 70 F-W E
22 415 2 T2,5 YUMA 22 -0 40 70 W-C E
23 420 2 T2.5 YUMA 31 -200 40 70 W-EE
2 4 43 0 2- M715 YU MA -' V 3 00 ~46 7g~- 0W;.--
25 436 2 14715 YUM1A 22 300 46 70 Il-F E
26 437 2 14715 YUMA* 22 100 46 70 w -CE 0
27 439 2 14715 YUM~A 22 -100 46 70 Il-C

28 450 2 M4792 YUMA 16 300 467o Il-E
29 456 2 14792 YUMA _ _22 400 40 TO E-WE

............465_'__ 2 M479? YUMA 31 -100 40 70................
31 505 2 T2*5 GRAYL.ING .16 200 40 70 S-N 0
32 516 2 T2,5 GRAYLING 22 100 40 70 N-S E
33 521 2 T2,5 GRAYLING 31 500 40 70 N-S C.........*
34 522 2 T2m5 GRAYL.ING 31 200 40 70 N-S E
35 556 2 14151 FT*RPAGG 6 -20 50 70 S-N E
36 569.........1415 "T 8FAGG7_ 3iU-_-2O00 50 70....~ N ~ -.-.-...

37 571 2 1415i FTo4FAGG 31 100 s0 70 N-S 0
38 576 2 T2.5 FT.RRAGG 6 200 5070o N-S E
39 581 2 T2.5 FT.BPAGG 16 -100 50 70 S-N E
40 593 2 T2,5 FToRPAGG 22 -100 s0 TO S-N E
41 -598 2 T2*5 FT6R4PAGG 31 -200 50 70 S-N C
42 26 -140? YUMA---- ---- 9 _-ý100- 30 70 C-N £,
43 28 1 M141? YUMA 22 500 30 70 N-E E
44 39 1 14107 YUM4A 28 300 30 70 E-W E
45 41 1 14107 YUM4A 28 -200 30 70 E-W E
46 47 1 14107 YUM4A 28 -300 3070O E-N E
47 90 1 1460 YUM4A 16 -400 -16 70 Il-F---- E
48 236' 1 M445 YUMA- 22 300 20 70 C-N eC ...
49 245 1 M14. YUM4A 22 200 20 70 E-N E
50 272 1 1448 GRAYLING 6 200 20 40 S-N E
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TABLE D.2
(Continued)

I. jJ A / G A I DI R C T I O S E

J ~NUMl llEROCT CLASS TYPS SITE SPEED RANGE ASGI IETO E

51 274 1 M448 GRAYLING 6 -20 20 40 S-N E
52 275 1 M45 GRAYLTNG 6 -600 20 40 S-N c
53 277 1 M144 GRAYLING 6 300 20 40 N-S a
54 279 1 M144 GRAYLING 6 -200 20 40 N-S0
55 280 1 M41. GRAYLING 6 -200 20 40 N-S _ _E

56 ?61 -1 M4 PAY AYIO~ it 100' 20 40 S-N4
57 286 t M448 GRAYLING 16 200 20 40 N-S E
58 287 1 M448 GRAYLING 16 -100 20 40 N-S E
59 286 1 M448 GRAYLING 20 2 00, 20 40 S-N E.....
60 294 1 M44. GRAYLING 20 t00 20 40 N-S E
61. 295 1 M448 GRAYLING 20 -200 20 40 N-S E
62. .36f. I 1413 GRAYLING" 6 '400 36 70" N-S £
63 332 t. M113 FT.IRPAGG 6 200 40 70 N-S E .

64 337 1 Mlj13 FT*BFAGG 16 -100 40 70 S-N E
65 338 1 M4113 FT*RPAGG 16 -300 40 70 S-N E
66 339 1 M4113 FTeRFAGG 16 400 40 70 N-S E
67 340 1 M4113 FT.!SPAGG 16 200 40 70 N-S E _

68 346 I 14113 FTo1qPAGG- 22 -100 40 T0 S-N E'T7
69 349 1 14113 PT*RPAGG 22 200 40 70 N-S E
70 352 1 M4113 FTeIPAGG 25 So0 40 70 S-N a
71 354 1 14113 FT*RPAGG 25 -100 40 70 S-N 0
72 35S £ '4113 FT*8FAGG 25 -400 40 70 S-N 0

..73 356 ± M1413 FT*RFAGG 25.400 40 70.... N-S *.0

74 357 1 14113 FT.BPAGG 25" 300 40' 70 N-SE
75 360 1 14113 FT.RFAGG 25 -300 40 70 N-S E
76 370 1. M448 FT*iRPAGG 16 200 30 70 N-S E
77 377 1 1448 FT*9FAGG 20 S00 30 70 S-N E

"fD" stands for design and "E" for evaluation under title
descriptor "SET."
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